A. | -1 | B. | -3 | C. | -4 | D. | -5 |
分析 先解方程nx+4n=0得到直线y=nx+4n与x轴的交点坐标为(-4,0),然后利用函数图象写出在x轴上方且直线y=nx+4n在直线y=-x+m的下方所对应的自变量的范围,再找出此范围内的整数即可.
解答 解:当y=0时,nx+4n=0,解得x=-4,所以直线y=nx+4n与x轴的交点坐标为(-4,0),
当x>-4时,nx+4n>0;
当x<-2时,-x+m>nx+4n,
所以当-4<x<-2时,-x+m>nx+4n>0,
所以不等式-x+m>nx+4n>0的整数解为x=-3.
故选B.
点评 本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.解决本题的关键是求出直线y=nx+4n与x轴的交点坐标.
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{3}{10}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 3+$\sqrt{3}$=3$\sqrt{3}$ | B. | $\sqrt{{{(-2)}^2}}$=2 | C. | $\sqrt{50}$=$\sqrt{25+25}$=5+5=10 | D. | $\sqrt{4\frac{1}{9}}$=2$\frac{1}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com