精英家教网 > 初中数学 > 题目详情
(2007•宿迁)如图,在平面直角坐标系中,⊙O1的直径OA在x轴上,O1A=2,直线OB交⊙O1于点B,∠BOA=30°,P为经过O、B、A三点的抛物线的顶点.
(1)求点P的坐标;
(2)求证:PB是⊙O1的切线.

【答案】分析:(1)已知了圆的半径,即可得出A点的坐标;连接O1B,过点B作BC⊥x轴于点C,可在构建的直角三角形O1BC中,根据BO1C的度数和圆的半径求出B点坐标,进而可根据O、A、B三点坐标求出抛物线的解析式,即可得出P点坐标.
(2)证PB是⊙O1的切线,就是证O1B⊥PA,本题主要利用勾股定理进行秋季.可根据O1,P,B三点坐标,分别求出O1P、PB的长,然后用勾股定理进行判断即可.也可求出直线BP与x轴的交点(设为D)的坐标,然后在三角形O1BD中,用勾股定理验证.道理一样.
解答:(1)解:如图,
连接O1B,过点B作BC⊥x轴于点C
∵∠BOA=30°,半径O1A=2,
∴∠BO1C=60°,O1C=1,BC=
∴点B坐标为(3,).
设过O(0,0),A(4,0)两点抛物线解析式为y=ax(x-4),
∵点B(3,)在抛物线上,
=a×3×(3-4),
∴a=-
∴抛物线的解析式为y=-x2+x,
∴顶点P的坐标为(2,).

(2)证明:设过P(2,)、B(3,)两点直线的解析式为y=kx+b,

∴直线的解析式为y=-x+2
令y=0,则x=6,
∴直线PB与x轴的交点坐标为D(6,0),
∴OD=6,CD=3,O1D=3+1=4,
∵OB=2
∴BD=2
∴O1B2+BD2=22+(22=16=O1D2
∴O1B2+BD2=O1D2
∴O1B⊥BD,
即PB是⊙O1的切线.
点评:本题考查了二次函数解析式的确定、切线的判断等知识.
练习册系列答案
相关习题

科目:初中数学 来源:2007年江苏省宿迁市中考数学试卷(解析版) 题型:解答题

(2007•宿迁)如图,在平面直角坐标系中,⊙O1的直径OA在x轴上,O1A=2,直线OB交⊙O1于点B,∠BOA=30°,P为经过O、B、A三点的抛物线的顶点.
(1)求点P的坐标;
(2)求证:PB是⊙O1的切线.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《图形的相似》(04)(解析版) 题型:解答题

(2007•宿迁)如图CE是等边三角形ABC边AB边上的高,AB=4,DA⊥AB,DA=,BD与CE、CA分别交于点F、M.
(1)求CF的长;
(2)求△ABM的面积.

查看答案和解析>>

科目:初中数学 来源:2007年江苏省宿迁市中考数学试卷(解析版) 题型:选择题

(2007•宿迁)如图,在△ABC中,AB=a,AC=b,BC边上的垂直平分线DE交BC、BA分别于点D、E,则△AEC的周长等于( )

A.a+b
B.a-b
C.2a+b
D.a+2b

查看答案和解析>>

科目:初中数学 来源:2007年江苏省宿迁市中考数学试卷(解析版) 题型:选择题

(2007•宿迁)如图,△ABC的顶点都是正方形网格中的格点,则sin∠ABC等于( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案