精英家教网 > 初中数学 > 题目详情

【题目】将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A( ,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.

(1)如图①,当点A′与顶点B重合时,求点M的坐标;
(2)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;
(3)当S= 时,求点M的坐标(直接写出结果即可).

【答案】
(1)

解:在Rt△ABO中,点A( ,0),点B(0,1),点O(0,0),

∴OA= ,OB=1,

由OM=m,可得:AM=OA﹣OM= ﹣m,

根据题意,由折叠可知△BMN≌△AMN,

∴BM=AM= ﹣m,

在Rt△MOB中,由勾股定理,BM2=OB2+OM2

可得: ,解得m=

∴点M的坐标为( ,0);


(2)

解:在Rt△ABO中,tan∠OAB=

∴∠OAB=30°,

由MN⊥AB,可得:∠MNA=90°,

∴在Rt△AMN中,MN=ANsin∠OAB=

AN=ANcos∠OAB=

由折叠可知△A'MN≌△AMN,则∠A'=∠OAB=30°,

∴∠A'MO=∠A'+∠OAB=60°,

∴在Rt△COM中,可得CO=OMtan∠A'MO= m,


(3)

解:①当点A′落在第二象限时,把S的值代入(2)中的函数关系式中,解方程求得m,根据m的取值范围判断取舍,两个根都舍去了;

②当点A′落在第一象限时,则S=SRt△AMN,根据(2)中Rt△AMN的面积列方程求解,根据此时m的取值范围,把S= 代入,可得点M的坐标为( ,0).


【解析】(1)根据折叠的性质得出BM=AM,再由勾股定理进行解答即可;(2)根据勾股定理和三角形的面积得出△AMN,△COM和△ABO的面积,进而表示出S的代数式即可;(3)把S= 代入解答即可.
【考点精析】关于本题考查的翻折变换(折叠问题),需要了解折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,连AD,BE,F为线段AD的中点,连接CF

(1)如图1,当D点在BC上时,求证:①BE=2CF,②BE⊥CF.
(2)如图2,把△DEC绕C点顺时针旋转一个锐角,其他条件不变,问(1)中的关系是否仍然成立?如果成立请证明.如果不成立,请写出相应的正确的结论并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】暑假期间,某学校计划用彩色的地面砖铺设教学楼门前一块矩形操场ABCD的地面.已知这个矩形操场地面的长为100m,宽为80m,图案设计如图所示:操场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,在实际铺设的过程总,阴影部分铺红色地面砖,其余部分铺灰色地面砖.

(1)如果操场上铺灰色地面砖的面积是铺红色地面砖面积的4倍,那么操场四角的每个小正方形边长是多少米?
(2)如果灰色地面砖的价格为每平方米30元,红色地面砖的价格为每平方米20元,学校现有15万元资金,问这些资金是否能购买所需的全部地面砖?如果能购买所学的全部地面砖,则剩余资金是多少元?如果不能购买所需的全部地面砖,教育局还应该至少给学校解决多少资金?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+c的图象如图所示,给出以下四个结论:①abc=0;②a+b+c>0;③a>b;④4ac﹣b2<0.其中正确结论有

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.
(1)根据题意,填写如表:

蔬菜的批发量(千克)

25

60

75

90

所付的金额(元)

125

300


(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;

(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定:转动两个转盘各一次,指向大的数字获胜.
(1)用树状图或列表格列出两个转盘转出的所有可能出现的结果;
(2)如果由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量yA(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:
(1)求yB关于x的函数解析式;
(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,ADBC于点D,BE是∠ABC的平分线,已知∠ABC=40°,C=60°,求∠AOB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠C=90°,∠A=30°,点D,E分别在边AC,AB上,点D与点A,点C都不重合,点F在边CB的延长线上,且AE=ED=BF,连接DFAB于点G.若BC=4,则线段EG的长为__

查看答案和解析>>

同步练习册答案