精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,抛物线x轴交于AB两点(A在点B左侧),y轴交于点C.

(1)判断的形状,并说明理由;
(2)如图(1),P为直线BC下方的二次函数图象上的一个动点(PBC不重合),过点py轴的平行线交x轴于点E.面积的最大值时,F为线段BC一点(不与点BC重合),连接EF,动点G从点E出发,沿线段EF以每秒1个单位的速度运动到点F,再沿FC以每秒个单位的速度运动到点C后停止,当点F的坐标是多少时,G在整个运动过程中用时最少?
(3)如图2,沿射线CB方向以每秒个单位的速度平移,记平移后的连接,直线交抛物线与点M,设平移的时间为t,为等腰三角形时,t的值.

【答案】(1)是直角三角形;(2);(3)t的值为

【解析】

(1)结论: 是直角三角形.,,推出,,,推出,可得;
(2),作射线CN,使得,H, G,,首先求出点P坐标,动点G的运动时间,根据垂线段最短可知,,动点G的运动时间最小,由此即可解决问题;
(3)求出直线AM的解析式,利用方程组求出点M坐标,由题意,分三种情形讨论,想办法列出方程即可解决问题;

:(1)结论:是直角三角形.
理由:如图1,连接AC.


∵抛物线 x轴交于AB两点(A在点B左侧),y轴交于点C,

, ,
,


是直角三角形.

(2),作射线CN,使得,H, G,



, 的面积最大,此时,
∵动点G的运动时间,
根据垂线段最短可知,,动点G的运动时间最小,
,
,
, , ,,
∴此时F的坐标为

(3)由题意直线BC的解析式为,直线AM的解析式为,
,解得,

,
①当, ,解得,
②当, ,解得
③当, ,解得 (舍弃),
综上所述,满足条件的t的值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知抛物线y=x2-bx+5x轴交于AB两点,与y轴交于点C,已知点A的坐标是(10),点A在点B的左边.

1)求抛物线的函数解析式;

2)如图1,点EBC的中点,将BOC沿CE方向进行平移,平移后得到的三角形为HGF,当点F与点E重合时停止运动.设平移的距离CF=m,记HGF在直线ly=x-3下方的图形面积为S,求S关于m的函数解析式;

3)如图2,连结ACBC,点ME分别是AC, BC的中点.P是线段ME上任一点,点Q是线段AB上任一点.现进行如下两步操作:

第一步:沿三角形CAB的中位线ME将纸片剪成两部分,并在线段ME上任意取一点P,线段AB上任意取一点Q,沿PQ将四边形纸片MABE剪成两部分;

第二步:将PQ左侧纸片绕M点按顺时针方向旋转180°,使线段MAMC重合,将PQ右侧纸片绕E点按逆时针方向旋转180°,使线段ECEB重合,拼成一个与三角形纸片ABC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)

求拼成的这个四边形纸片的周长的最小值与最大值的和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD是边长为10的菱形,对角线AC、BD相交于点E,过点CCFDBAB延长线于点F,联结EFBC于点H.

(1)如图1,当EFBC时,求AE的长;

(2)如图2,以EF为直径作⊙O,O经过点C交边CD于点G(点C、G不重合),设AE的长为x,EH的长为y;

①求y关于x的函数关系式,并写出定义域;

②联结EG,当△DEG是以DG为腰的等腰三角形时,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 A2m),B2m-5)在平面直角坐标系中,点O为坐标原点.若ABO是直角三角形,则m的值不可能是( )

A.4B.2C.1D.0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知水龙头喷水的初始速度v0可以分解为横向初始速度vx和纵向初始速度vyθ是水龙头的仰角,且.图2是一个建在斜坡上的花圃场地的截面示意图,水龙头的喷射点A在山坡的坡顶上(喷射点离地面高度忽略不计),坡顶的铅直高度OA15米,山坡的坡比为.离开水龙头后的水(看成点)获得初始速度v0/秒后的运动路径可以看作是抛物线,点M是运动过程中的某一位置.忽略空气阻力,实验表明:MA的高度之差d(米)与喷出时间t(秒)的关系为MA的水平距离为米.已知该水流的初始速度15/秒,水龙头的仰角θ

1)求水流的横向初始速度vx和纵向初始速度vy

2)用含t的代数式表示点M的横坐标x和纵坐标y,并求yx的关系式(不写x的取值范围);

3)水流在山坡上的落点C离喷射点A的水平距离是多少米?若要使水流恰好喷射到坡脚B处的小树,在相同仰角下,则需要把喷射点A沿坡面AB方向移动多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2019319日,河南省教育厅发布《关于推进中小学生研学旅行的实施方案》,某中学为落实方案,给学生提供了以下五种主题式研学线路:A红色河南B厚重河南C出彩河南D生态河南E老家河南为了解学生最喜欢哪一种研学线路(每人只选取一种),随机抽取了部分学生进行调查,将调查结果绘制成如下不完整的统计表和统计图.根据以上信息解答下列问题:

调查结果统计表

主题

人数/

百分比

A

75

n%

B

m

30%

C

45

15%

D

60

E

30

1)本次接受调查的总人数为   人,统计表中m   n   

2)补全条形统计图.

3)若把条形统计图改为扇形统计图,则生态河南主题线路所在扇形的圆心角度是   

4)若该实验中学共有学生3000人,请据此估计该校最喜欢老家河南主题线路的学生有多少人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知EF分别为正方形ABCD的边ABBC的中点,AFDE交于点M,则下列结论:①∠AME=90°;②∠BAF=EDB;③MD=2AM=4EM;④AM=MF.其中正确结论的个数是(  )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.

(1)求抛物线的函数表达式.

(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?

(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,二次函数y=-x2-bx+c的图象经过点A,点B10)和点C03).点D是抛物线的顶点.

1)求二次函数的解析式和点D的坐标

2)直线y=kx+nk≠0)与抛物线交于点MN,当CMN的面积被y轴平分时,求kn应满足的条件

3)抛物线的对称轴与x轴交于点E,将抛物线向下平移mm0)个单位,平移后抛物线与y轴交于点C,连接DCOD,是否存在OD平分∠CDE的情况?若存在,求出m的值;若不荐在,请说明理由.

查看答案和解析>>

同步练习册答案