精英家教网 > 初中数学 > 题目详情
如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿轴以每秒1个单位长的速度向上移动,且过点P的直线l:也随之移动,设移动时间为t秒.

(1)当t=3时,求l的解析式;
(2)若点M,N位于l的异侧,确定t的取值范围;
(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.
(1)
(2)4<t<7。
(3)点M关于l的对称点,当t=1时,落在y轴上,当t=2时,落在x轴上

分析:(1)利用一次函数图象上点的坐标特征,求出一次函数的解析式。
(2)分别求出直线l经过点M、点N时的t值,即可得到t的取值范围。
(3)找出点M关于直线l在坐标轴上的对称点E、F,如图所示.求出点E、F的坐标,然后分别求出ME、MF中点坐标,最后分别求出时间t的值。
(1)直线交y轴于点P(0,b),
由题意,得b>0,t≥0,b=1+t,
当t=3时,b=4。
∴当t=3时, l的解析式为
(2)当直线过点M(3,2)时,,解得:b=5,
由5=1+t解得t=4。
当直线过点N(4,4)时,,解得:b=8,
由8=1+t解得t=7。
∴若点M,N位于l的异侧,t的取值范围是:4<t<7。
(3)如右图,过点M作MF⊥直线l,交y轴于点F,交x轴于点E,则点E、F为点M在坐标轴上的对称点。
过点M作MD⊥x轴于点D,则OD=3,MD=2,

∵∠MED=∠OEF=45°,
∴△MDE与△OEF均为等腰直角三角形。
∴DE=MD=2,OE=OF=1。∴E(1,0),F(0,-1)。
∵M(3,2),F(0,-1),
∴线段MF中点坐标为
∵直线过点,∴,解得:b=2,
2=1+t,解得t=1。
∵M(3,2),E(1,0),∴线段ME中点坐标为(2,1)。
直线过点(2,1),则,解得:b=3,
3=1+t,解得t=2。
∴点M关于l的对称点,当t=1时,落在y轴上,当t=2时,落在x轴上。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

为预防甲型H1N1流感,某校对教室喷洒药物进行消毒.已知喷洒药物时每立方米空气中的含药量y(毫克)与时间x(分钟)成正比,药物喷洒完后,y与x成反比例(如图所示).现测得10分钟喷洒完后,空气中每立方米的含药量为8毫克.

(1)求喷洒药物时和喷洒完后,y关于x的函数关系式;
(2)若空气中每立方米的含药量低于2毫克学生方可进教室,问消毒开始后至少要经过多少分钟,学生才能回到教室?
(3)如果空气中每立方米的含药量不低于4毫克,且持续时间不低于10分钟时,才能杀灭流感病毒,那么此次消毒是否有效?为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将直线向右平移1个单位后所得图象对应的函数解析式为
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数的图象与反比例函数的图象交于两点,直线分别交轴、轴于两点.

(1)求上述反比例函数和一次函数的解析式;
(2)求的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2013年四川广安8分)某商场筹集资金12.8万元,一次性购进空调、彩电共30台.根据市场需要,这些空调、彩电可以全部销售,全部销售后利润不少于1.5万元,其中空调、彩电的进价和售价见表格.
 
空调
彩电
进价(元/台)
5400
3500
售价(元/台)
6100
3900
设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.
(1)试写出y与x的函数关系式;
(2)商场有哪几种进货方案可供选择?
(3)选择哪种进货方案,商场获利最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将一次函数图像向下平移个单位,与双曲线交于点A,与轴交于点B,则=(    )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

小李和小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中的信息,有下列说法:
(1)他们都行驶了20 km;
(2)小陆全程共用了1.5h;
(3)小李和小陆相遇后,小李的速度小于小陆的速度
(4)小李在途中停留了0.5h。
其中正确的有
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

函数的图象在同一平面直角坐标系内的交点的个数是(    )
A.1个B.2个C.3个D.0

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某校为了深化课堂教学改革,现要配备一批A、B两种型号的小白板,经与销售商洽谈,搭成协议,购买一块A型小白板比一块B型小白板贵20元,且购5块A型小白板和4块B型小白板共需820元。
(1)求分别购买一块A型、B型小白板各需多少元?
(2)根据该校实际情况,需购A、B两种型号共60块,要求总价不超过5300元,且A型数量多于总数的,请通过计算,求出该校有几种购买方案?
(3)在(2)的条件下,学校为了节约开支,至少需花多少钱采购?

查看答案和解析>>

同步练习册答案