精英家教网 > 初中数学 > 题目详情

两个以点O为圆心的同心圆中,大圆的弦AB与小圆相切,如果AB的长为24,大圆的半径OA为13,那么小圆的半径为________.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在直角坐标系中,A(0,4),B(4
3
,0).点C从点B出发沿BA方向以每秒2个单位的速度向点A匀速运动,同时点D从点A出发沿AO方向以每秒1个单位的速度向点O匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点C、D运动的时间是t秒(t>0).过点C作CE⊥BO于点E,连接CD、DE.
(1)当t为何值时,线段CD的长为4;
(2)当线段DE与以点O为圆心,半径为
3
2
的⊙O有两个公共交点时,求t的取值范围;
(3)当t为何值时,以C为圆心、CB为半径的⊙C与(2)中的⊙O相切?

查看答案和解析>>

科目:初中数学 来源: 题型:

我们学习了“弧、弦、圆心角的关系”,实际上我们还可以得到“圆心角、弧、弦、弦心距之间的关系”如下:圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角i两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们对应的其余各组量也相等.(弦心距指从圆心到弦的距离(如图(1)中的OC、OC′),弦心距也可以说成圆心到弦的垂线段的长度.)
请直接运用圆心角、弧、弦、弦心距之间的关系解答下列问题.
如图(2),O是∠EPF的平分线上一点,以点O为圆心的圆与角的两边分别交子点A、B、C、D.
(1)求证:AB=CD;
(2)若角的顶点P在圆上或圆内,上述结论还成立吗?若不成立,请说明理由;若成立,请加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠B=90°,B(0,0),A(0,4),C(4
3
,0).点D从点C出发沿CA方向以每秒2个单位的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.
(1)当t为何值时,线段DE长为
39

(2)当线段EF与以点B为圆心,半径为1的⊙B有两个公共交点时,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

我们学习了“弧、弦、圆心角的关系”,实际上我们还可以得到“圆心角、弧、弦、弦心距之间的关系”如下:圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角i两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们对应的其余各组量也相等.(弦心距指从圆心到弦的距离(如图(1)中的OC、OC′),弦心距也可以说成圆心到弦的垂线段的长度.)
请直接运用圆心角、弧、弦、弦心距之间的关系解答下列问题.
如图(2),O是∠EPF的平分线上一点,以点O为圆心的圆与角的两边分别交子点A、B、C、D.
(1)求证:AB=CD;
(2)若角的顶点P在圆上或圆内,上述结论还成立吗?若不成立,请说明理由;若成立,请加以证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我们学习了“弧、弦、圆心角的关系”,实际上我们还可以得到“圆心角、弧、弦、弦心距之间的关系”如下:圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角i两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们对应的其余各组量也相等.(弦心距指从圆心到弦的距离(如图(1)中的OC、OC′),弦心距也可以说成圆心到弦的垂线段的长度.)
请直接运用圆心角、弧、弦、弦心距之间的关系解答下列问题.
如图(2),O是∠EPF的平分线上一点,以点O为圆心的圆与角的两边分别交子点A、B、C、D.
(1)求证:AB=CD;
(2)若角的顶点P在圆上或圆内,上述结论还成立吗?若不成立,请说明理由;若成立,请加以证明.

精英家教网

查看答案和解析>>

同步练习册答案