精英家教网 > 初中数学 > 题目详情
如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD,AE,并延长AE交BD于F.
(1)求证:△ACE≌△BCD;
(2)直线AE与BD互相垂直吗?请证明你的结论.

【答案】分析:(1)根据SAS判定△ACE≌△BCD,从而得到∠EAC=∠DBC,根据角之间的关系可证得AF⊥BD.
(2)互相垂直,只要证明∠AFD=90°,从而转化为证明∠EAC+∠CDB=90即可.
解答:(1)证明:∵△ACB和△ECD都是等腰直角三角形,
∴AC=BC,CE=CD,∠ACE=∠BCD=90°,
在△ACE和△BCD,

∴△ACE≌△BCD(SAS);

(2)解:直线AE与BD互相垂直,理由为:
证明:∵△ACE≌△BCD,
∴∠EAC=∠DBC,
又∵∠DBC+∠CDB=90°,
∴∠EAC+∠CDB=90°,
∴∠AFD=90°,
∴AF⊥BD,
即直线AE与BD互相垂直.
点评:此题主要考查学生对全等三角形的判定及直角三角形的判定的掌握情况.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:
(1)△ACE≌△BCD;
(2)AD2+DB2=DE2

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD,AE,并延长AE交BD于F.
(1)求证:△ACE≌△BCD;
(2)直线AE与BD互相垂直吗?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.
求证:AE=BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ACB和△ECD中,AC=BC,CE=CD,BC⊥AD,A、C、D三点在同一直线上,连接BD、AE,并延长交BD于F.
(1)求证:△ACE≌△BCD;
(2)直线AF与BD有怎样的位置关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ACB和△ECD均为等腰直角三角形,∠ACB=∠ECD=90°,D在AB上.
(1)求证:△ACE≌△BCD;
(2)若AD=1,BD=2,求ED的长.

查看答案和解析>>

同步练习册答案