精英家教网 > 初中数学 > 题目详情
已知:如图,BE是⊙O的直径,BC切⊙O于B,弦ED∥OC,连结CD并延长交BE的延长线于点A.
证明:CD是⊙O的切线.
分析:连接OD,由DE与CO平行,利用两直线平行内错角相等、同位角相等得到两对角相等,再由OD=OE,利用等边对等角得到一对角相等,等量代换得到∠COB=∠COD,再由OD=OB,OC为公共边,利用SAS得出三角形BCO与三角形DCO全等,由全等三角形对应角相等得到一对角相等,由BC为圆的切线,利用切线的性质得到∠CBO=90°,进而得到∠CDO=90°,再由OD为圆的半径,即可得到CD为圆O的切线.
解答:证明:连接OD,
∵ED∥OC,
∴∠COB=∠DEO,∠COD=∠EDO,
∵OD=OE,
∴∠DEO=∠EDO,
∴∠COB=∠COD,
在△BCO和△DCO中,
OB=OD
∠COB=∠COD
OC=OC

∴△BCO≌△DCO(SAS),
∴∠CDO=∠CBO,
∵BC为圆O的切线,
∴BC⊥OB,即∠CBO=90°,
∴∠CDO=90°,
又∵OD为圆的半径,
∴CD为圆O的切线.
点评:此题考查了切线的判定与性质,以及全等三角形的判定与性质,熟练掌握切线的判定方法是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,BE是⊙O的直径,CB与⊙O相切于点B,OC∥DE交⊙O于点D,CD的延长线与BE的延长线精英家教网交于A点.
(1)求证:AC是⊙O的切线;
(2)若AD=4,CD=6,求tan∠ADE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,BE是△ABC的外接圆O的直径,CD是△ABC的高.
(1)求证:AC•BC=BE•CD;
(2)已知CD=6,AD=3,BD=8,求⊙O的直径BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、已知:如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,∠AOD=∠APC.
求证:AP是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,∠AOD=∠APC.
(1)求证:AP是⊙O的切线;
(2)若AC=4CO,AP=2
5
,求⊙O的半径.

查看答案和解析>>

同步练习册答案