精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数的图象经过两点,与反比例函数的图象在第一象限内的交点为

求一次函数和反比例函数的表达式;

x轴上是否存在点P,使?若存在,求出点P的坐标;若不存在,说明理由.

【答案】(1);(2)存在;.

【解析】

1)先利用待定系数法求一次函数解析式,再利用一次函数解析式确定M点的坐标,然后利用待定系数法求反比例函数解析式;

2)先利用两点间的距离公式计算出ABBM2,再证明RtOBARtMBP,利用相似比计算出PB10,则OP11,于是可得到P点坐标.

解:代入

解得

所以一次函数解析式为

代入

解得

M点坐标为

代入

所以反比例函数解析式为

存在.

,即

点坐标为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校对A《唐诗》、B《宋词》、C《蒙山童韵》、D其它,这四类著作开展最受欢迎的传统文化著作调查,随机调查了若干名学生(每名学生必选且只能选这四类著作中的一种)并将得到的信息绘制了下面两幅不完整的统计图:

1)求一共调查了多少名学生;

2)请将条形统计图补充完整;

3)该校语文老师想从这四类著作中随机选取两类作为学生寒假必读书籍,请用树状图或列表的方法求恰好选中《宋词》和《蒙山童韵》的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在等边三角形ABC中,BC=8cm,射线AGBC,点E从点A出发沿射线AG1cm/s的速度运动,同时点F从点B出发沿射线BC2cm/s的速度运动,设运动时间为ts).

1)连接EF,当EF经过AC边的中点D时,求证:四边形AFCE是平行四边形;

2)填空:t  s时,四边形ACFE是菱形;

t  s时,△ACE的面积是△ACF的面积的2倍.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象与反比例函数(x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C.

(1)求一次函数与反比例函数的解析式;

(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知一个二次函数的图象经过三点.

1)求抛物线的解析式;

2)求抛物线的对称轴和顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形的边长为,动点点出发,以的速度沿着边运动,到达点停止运动;另一动点同时从点出发,以的速度沿着边点运动,到达点停止运动.设点的运动时间为单位:的面积为单位:,则的函数关系的大致图象为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3 组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是( ).

A.(2014,0) B.(2015,-1) C. (2015,1) D. (2016,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题探究

1)如图①,在正方形ABCD内,请画出使∠BPC=90°的所有点P

2)如图②,已知矩形ABCDAB=9BC=10,在矩形ABCD内(含边)画出使∠BPC=60°的所有点P,并求出APD面积的最大值;

3)随着社会发展,农业观光园走进了我们的生活,某农业观光园的平面示意图如图3所示的四边形ABCD,其中∠A=120°,∠B=C=90°AB=kmBC=6km,观光园的设计者想在园中找一点P,使得点P与点ABCD所连接的线段将整个观光园分成四个区域,用来进行不同的设计与规划,从实用和美观的角度他们还要求在BPC的区域内∠BPC=120°,且APD的区域面积最小,试问在四边形ABCD内是否存在这样的点P,使得∠BPC=120°,且APD面积最小?若存在,请你在图中画出点P点的位置,并求出APD的最小面积.若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,反比例函数y= 的图象与一次函数y=x+b的图象交

于点A(1,4)、点B(-4,n).

(1)求一次函数和反比例函数的解析式;

(2)求△OAB的面积;

(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.

查看答案和解析>>

同步练习册答案