精英家教网 > 初中数学 > 题目详情

如图,已知反比例函数数学公式的图象经过第二象限内的点A(-2,m),AB⊥x轴于B,△AOB的面积为3,
(1)求k,m的值;
(2)若直线y=ax+b经过点A,并且经过反比例函数数学公式的图象上另一点数学公式
①求直线y=ax+b的解析式;
②设直线y=ax+b与x轴交于点M,求AM的长;
③根据图象写出使反比例函数数学公式>y=ax+b的值x的取值范围.

解:(1)∵点A(-2,m)在第二象限内
∴AB=m,OB=2

即:∴,解得m=3
∴A(-2,3)
∵点A(-2,3)在反比例函数的图象上,
,解得:k=-6;

(2)由(1)知,反比例函数为
又∵反比例函数的图象经过

解得:n=4.

①∵直线y=ax+b过点A(-2,3)、


解方程组得∴直线y=ax+b的解析式为
②当y=0时,即,解得:x=2,即点M(2,0)
在Rt△ABM中,∵AB=3,BM=BO+OM=2+2=4
由勾股定理得:AM=5.
③由图象知:当-2<x<0或x>4时,
反比例函数的值>的值.
分析:(1)利用△AOB的面积可求出点A的坐标,把点A的坐标代入反比例函数解析式即可求得k的值;
(2)把C坐标代入反比例函数就能求得C完整的坐标:
①把A、C代入一次函数解析式就能求得解析式;
②求出M的坐标,利用勾股定理即可求得AM长;
③应从A、C两点入手,判断出反比例函数的值>y=ax+b的值x的取值范围.
点评:过某个点,这个点的坐标应适合这个函数解析式.求一次函数的解析式需知道它上面的两个点的坐标;求自变量的取值范围应该从交点入手思考;需注意反比例函数的自变量不能取0.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
m
x
图象与一次函数y=kx+b的图象均经过A(-1,4)和B(a,
4
5
)两点,
(1)求B点的坐标及两个函数的解析式;
(2)若一次函数y=kx+b的图象与x轴交于点C,求C点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
kx
(k>0)的图象经过点A(2,m),过点A作AB⊥x轴于点B,且S△AOB=3.若一次函数y=ax+1的图象经过点A,并且与x轴相交于点C,求AO:AC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
kx
的图象与一次函数y=ax+b的图象交于M(2,m)和N(-1,-4)两点.
(1)求这两个函数的解析式;
(2)求△MON的面积;
(3)请判断点P(4,1)是否在这个反比例函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知反比例函数y1=
kx
和一次函数y2=ax+b的图象相交于点A和点D,且点A的横坐标为1,点D的纵坐标为-1.过点A作AB⊥x轴于点B,△AOB的面积为1.
(1)求反比例函数和一次函数的解析式.
(2)若一次函数y2=ax+b的图象与x轴相交于点C,求∠ACO的度数.
(3)结合图象直接写出:当y1>y2时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知反比例函数y=
k
x
的图象经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,一2).
(1)求直线y=ax+b的解析式;
(2)设直线y=ax+b与x轴交于点M,求AM的长;
(3)在双曲线上是否存在点P,使得△MBP的面积为8?若存在请求P点坐标;若不存在请说明理由.

查看答案和解析>>

同步练习册答案