精英家教网 > 初中数学 > 题目详情
如图1,以矩形ABCD的顶点A为原点,AD所在的直线为x轴,AB所在的直线为y轴,建立平面直角坐标系.点D的坐标为(8,0),点B的坐标为(0,6),点F在对角线AC上运动(点F不与点A、C重合),过点F分别作x轴、y轴的垂线,垂足为G、E.设四边形BCFE的面积为S1,四边形CDGF的面积为S2,△AFG的面积为S3
(1)试判断S1,S2的关系,并加以证明;
(2)当S3:S2=1:3时,求点F的坐标;
(3)如图2,在(2)的条件下,把△AEF沿对角线AC所在直线平移,得到△A′E′F′,且A′,F′两点始终在直线AC上,是否存在这样的点E′,使点E′到x轴的距离与到y轴的距离比是5:4?若存在,请求出点E′的坐标;若不存在,请说明理由.
精英家教网
分析:(1)两者应该相等,由于四边形ADCB是矩形,那么对角线平分矩形的面积,同理OF也平分矩形AEFG的面积,由此就不难得出S1=S2了;
(2)S3:S2=S3:S1=1:3,也就能得出S△AGF:S△ADC=1:4,根据相似三角形的面积比等于相似比的平方,可得出OF:OC=1:2,即F为OC中点.由此可根据C、D的坐标直接求出F的坐标;
(3)由于A′F′始终在OC上,因此EE′所在的直线必平行于OC,可先求出直线EE′的解析式,然后根据E′横、纵坐标的比例关系来设出E′的坐标,代入直线EE′中即可求出E′的坐标.
解答:解:(1)S1=S2
证明:∵FE⊥y轴,FG⊥x轴,∠BAD=90°,
∴四边形AEFG是矩形.
∴AE=GF,EF=AG.
∴S△AEF=S△AFG
同理S△ABC=S△ACD
∴S△ABC-S△AEF=S△ACD-S△AFG
即S1=S2

(2)∵FG∥CD,
∴△AFG∽△ACD.
S3
S3+S2
=(
FG
CD
)2=(
AG
AD
)2=
1
1+3
=
1
4

∴FG=
1
2
CD,AG=
1
2
AD.
∵CD=BA=6,AD=BC=8,
∴FG=3,AG=4.
∴F(4,3);

(3)∵△A′E′F′是由△AEF沿直线AC平移得到的,且A′、F′两点始终在直线AC上,
∴点E′在过点E(0,3)且与直线AC平行的直线l上移动.
∵直线AC的解析式是y=
3
4
x,
∴直线L的解析式是y=
3
4
x+3.
设点E′为(x,y),
∵点E′到x轴的距离与到y轴的距离比是5:4,
∴|y|:|x|=5:4.
①当x、y为同号时,得
y=
5
4
x
y=
3
4
x+3
解得
x=6
y=7.5

∴E′(6,
15
2
);
②当x、y为异号时,得
y=-
5
4
x
y=
3
4
x+3
解得
x=-
3
2
y=
15
8

∴E′(-
3
2
15
8
).
∴存在满足条件的E′坐标分别是(6,
15
2
)、(-
3
2
15
8
).
精英家教网
点评:本题主要考查了矩形的性质、图形面积的求法、一次函数的应用等知识点.要注意的是(3)题在不确定E′横、纵坐标的符号时,要分类讨论,不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图①,在平面直角坐标系中,已知△ABC是等边三角形,点B的坐标为(12,0),动点P在线段AB上从点A向点B以每秒
3
个单位的速度运动,设运动时间为t秒.以点P为顶点,作等边△PMN,点M,N在x轴上.
(1)当t为何值时,点M与点O重合;
(2)求点P坐标和等边△PMN的边长(用t的代数式表示);
(3)如果取OB的中点D,以OD为边在△AOB内部作如图②所示的矩形ODEF,点E在线段AB上.设等边△PMN和矩形ODEF重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

23、我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)除了正方形外,写出你所学过的特殊四边形中是勾股四边形的两种图形的名称:
矩形、直角梯形

(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB,并写出点M的坐标;
(3)如图2,以△ABC的边AB,AC为边,向三角形外作正方形ABDE及ACFG,连接CE,BG相交于O点,P是线段DE上任意一点.求证:四边形OBPE是勾股四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

26、如图,在等边△ABC中,点D是BC边的中点,以AD为边作等边△ADE.
(1)求∠CAE的度数;
(2)取AB边的中点F,连接CF、CE,试证明四边形AFCE是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知矩形ABCD中,AB=12cm,BC=6cm,点M沿AB方向从A向B以2cm/秒的速度移动,点N从D沿DA方向以1c精英家教网m/秒的速度移动,如果M、N两点同时出发,移动的时间为x秒(0≤x≤6).
(1)当x为何值时,△MAN为等腰直角三角形?
(2)当x为何值时,有△MAN∽△ABC?
(3)爱动脑筋的小红同学在完成了以上联系后,对该问题作了深入的研究,她认为:在M、N的移动过程中(N不与D、A重合,M不与A、B重合),以A、M、C、N为顶点的四边形面积是一个常数.她的这种想法对吗?请说出理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•昌平区二模)(1)如图1,以AC为斜边的Rt△ABC和矩形HEFG摆放在直线l上(点B、C、E、F在直线l上),已知BC=EF=1,AB=HE=2.△ABC沿着直线l向右平移,设CE=x,△ABC与矩形HEFG重叠部分的面积为y(y≠0).当x=
35
时,求出y的值;
(2)在(1)的条件下,如图2,将Rt△ABC绕AC的中点旋转180°后与Rt△ABC形成一个新的矩形ABCD,当点C在点E的左侧,且x=2时,将矩形ABCD绕着点C顺时针旋转α角,将矩形HEFG绕着点E逆时针旋转相同的角度.若旋转到顶点D、H重合时,连接AG,求点D到AG的距离;
(3)在(2)的条件下,如图3,当α=45°时,设AD与GH交于点M,CD与HE交于点N,求证:四边形MHND为正方形.

查看答案和解析>>

同步练习册答案