x | … | -2 | 0 | 2 | 3 | … |
y | … | 8 | 0 | 0 | 3 | … |
A. | ①②③ | B. | ①③⑤ | C. | ①③④ | D. | ①④⑤ |
分析 结合图表可以得出当x=0或2时,y=0,x=3时,y=3,根据此三点可求出二次函数解析式,从而得出抛物线的性质.
解答 解:∵由图表可以得出当x=0或2时,y=0,x=3时,y=3,
∴$\left\{\begin{array}{l}{c=0}\\{4a+2b+c=0}\\{9a+3b+c=3}\end{array}\right.$
解得:$\left\{\begin{array}{l}{a=1}\\{b=-2}\\{c=0}\end{array}\right.$
∴y=x2-2x,
∵c=0,∴图象经过原点,故①正确;
∵a=1>0,
∴抛物线开口向上,故②错误;
把x=-1代入得,y=3,
∴图象经过点(-1,3),故③正确;
∵抛物线的对称轴是x=1,
∴x>1时,y随x的增大而增大,x<1时,y随x的增大而减小,故④错误;
∵抛物线y=ax2+bx+c与x轴有两个交点(0,0)、(2,0)
∴ax2+bx+c=0有两个不相等的实数根,故⑤正确;
故选:B.
点评 此题主要考查了待定系数法求二次函数解析式,以及由解析式求函数与坐标轴的交点以及一元二次方程根的判别式的应用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
X | -1 | 0 | 1 | 3 |
y | -1 | 3 | 5 | 3 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ($\frac{3}{2}$,$\frac{5}{9}$) | B. | ($\frac{\sqrt{5}}{3}$,$\frac{\sqrt{5}}{2}$) | C. | ($\frac{4}{3}$,$\frac{5}{4}$) | D. | ($\frac{\sqrt{10}}{3}$,$\frac{\sqrt{10}}{2}$) |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com