【题目】对于三个数a,b,c,用max{a,b,c}表示这三个数中最大数,例如:max{-2,1,0}=1,max
解决问题:
(1)填空:max{1,2,3}=______,如果max{3,4,2x-6}=2x-6,则x的取值范围为______;
(2)如果max{2,x+2,-3x-7}=5,求x的值;
(3)如图,在同一坐标系中画出了三个一次函数的图象:y=-x-3,y=x-1和y=3x-3请观察这三个函数的图象,
①在图中画出max{-x-3,x-1,3x-3}对应的图象(加粗);
②max{-x-3,x-1,3x-3}的最小值为______.
【答案】(1)3;x≥5(2)4或3(3)①见解析②2.
【解析】
(1)根据max{a,b,c}表示这三个数中最大数,只要找出a,b,c中的最大数即可解答;
(2)根据max{a,b,c}的定义分情况讨论即可求解;
(3)根据max{a,b,c}的定义作图,根据函数图像即可求解.
解:(1)max{1,2,3}中3为最大数,故max{1,2,3}=3
∵max{3,4,2x6}=2x6
∴2x6≥4,解得x≥5
故答案为:3;x≥5
(2)∵max{2,x+2,3x7}=5
∴①x+2=5,解得x=3,验证得3×37=16<5,成立
②3x7=5,解得x=4,验证得4+2=2<2<5,故成立
故max{2,x+2,3x7}=5时,x的值为4或3
(3)①图象如图所示
②由图象可以知,max{x3,x1,3x3}的最小值为直线y=x3与y=x1的交点,
联立y=x3与y=x1
解得y=2,
即最小值为2
故答案为2.
科目:初中数学 来源: 题型:
【题目】如下图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),点B2019的坐标为_____
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AE⊥BC于点E,延长BC至点F使CF=BE,连结AF,DE,DF.
(1)求证:四边形AEFD是矩形;
(2)若AB=6,DE=8,BF=10,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,∠B=60°,点M从点B出发沿射线BC方向,在射线BC上运动.在点M运动的过程中,连结AM,并以AM为边在射线BC上方,作等边△AMN,连结CN.
(1)当∠BAM= °时,AB=2BM;
(2)请添加一个条件: ,使得△ABC为等边三角形;
①如图1,当△ABC为等边三角形时,求证:CN+CM=AC;
②如图2,当点M运动到线段BC之外(即点M在线段BC的延长线上时),其它条件不变(△ABC仍为等边三角形),请写出此时线段CN、CM、AC满足的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分9分)如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.
(1)求证:AD平分∠BAC;
(2)若∠BAC = 60°,OA = 2,求阴影部分的面积(结果保留).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-x2+bx+c与x轴相交于A(-1,0),B(5,0)两点.
(1)求抛物线的解析式;
(2)在第二象限内取一点C,作CD垂直x轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;
(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,点为二次函数图象的顶点,直线分别交轴正半轴,轴于点,.
(1)判断顶点是否在直线上,并说明理由.
(2)如图1,若二次函数图象也经过点,,且,根据图象,写出的取值范围.
(3)如图2,点坐标为,点在内,若点,都在二次函数图象上,试比较与的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com