甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.
(1)分别求出y1,y2与x之间的关系式;
(2)当甲、乙两个商场的收费相同时,所买商品为多少件?
(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由.
(1);y2=2250x;
(2)甲、乙两个商场的收费相同时,所买商品为6件;
(3)所买商品为5件时,应选择乙商场更优惠.
解析试题分析:(1)由两家商场的优惠方案分别列式整理即可;
(2)由收费相同,列出方程求解即可;
(3)由函数解析式分别求出x=5时的函数值,即可得解
试题解析:(1)当x=1时,y1=3000;
当x>1时,y1=3000+3000(x﹣1)×(1﹣30%)=2100x+900.
∴;
y2=3000x(1﹣25%)=2250x,
∴y2=2250x;
(2)当甲、乙两个商场的收费相同时,2100x+900=2250x,
解得x=6,
答:甲、乙两个商场的收费相同时,所买商品为6件;
(3)x=5时,y1=2100x+900=2100×5+900=11400,
y2=2250x=2250×5=11250,
∵11400>11250,
∴所买商品为5件时,应选择乙商场更优惠.
考点:一次函数的应用
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足-(a-4)2≥0,
(1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标;
(2)直线y=bx+c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;
点P为正方形OABC的对角线AC上的动点(端点A、C除外),PM⊥PO,交直线AB于M,求的值
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,直线y=x+b(b≠0)交坐标轴于A、B两点,点D在直线上,D的横纵坐标之积为2,过D作两坐标轴的垂线DC、DE,连接OD.
(1)求证:AD平分∠CDE;
(2)对任意的实数b(b≠0),求证:AD•BD为定值;
(3)是否存在直线AB,使得四边形OBCD为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知一次函数图象如图:
(1)求一次函数的解析式;
(2)若点P为该一次函数图象上一点,且点A为该函数图象与x轴的交点,若S△PAO=6,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系.根据图象提供的信息,解答下列问题:
(1)求出蜡烛燃烧时y与x之间的函数关系式;
(2)求蜡烛从点燃到燃尽所用的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
在一条笔直的公路旁依次有A、B、C三个村庄,甲、乙两人同时分别从A、B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村.设甲、乙两人到C村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,请回答下列问题:
(1)A、C两村间的距离为 km,a= ;
(2)求出图中点P的坐标,并解释该点坐标所表示的实际意义;
(3)乙在行驶过程中,何时距甲10km?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系中,一次函数(a为常数)的图象与y轴相交于点A,与函数的图象相交于点B,.
(1)求点B的坐标及一次函数的解析式;
(2)若点P在y轴上,且△PAB为直角三角形,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
平面直角坐标系中,一次函数和反比例函数的图象都经过点.
(1)求的值和一次函数的表达式;
(2)点B在双曲线上,且位于直线的下方,若点B的横、纵坐标都是整数,直接写出点B的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
设,是任意两个不等实数,我们规定:满足不等式≤≤的实数的所有取值的全体叫做闭区间,表示为. 对于一个函数,如果它的自变量与函数值满足:当m≤≤n时,有m≤≤n,我们就称此函数是闭区间上的“闭函数”.
(1)反比例函数是闭区间上的“闭函数”吗?请判断并说明理由;
(2)若一次函数是闭区间上的“闭函数”,求此函数的表达式;
(3)若二次函数是闭区间上的“闭函数”,直接写出实数, 的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com