精英家教网 > 初中数学 > 题目详情

【题目】对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P′,点AB在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点AB的对应点分别为A′B′,如图,若点A表示的数是﹣3,则点A′表示的数是__;若点B′表示的数是2,则点B表示的数是__已知线段AB上的点E经过上述操作后得到的对应点E′与点E重合,则点E表示的数是__

【答案】 0 3 1.5

【解析】试题分析:根据题目规定,以及数轴上的数向右平移用加计算即可求出点A,设点B表示的数为a,根据题意列出方程求解即可得到点B表示的数,设点E表示的数为b,根据题意列出方程计算即可得解.

试题解析:解:点A+1=1+1=0

设点B表示的数为a,则a+1=2,解得a=3

设点E表示的数为b,则b+1=b,解得b=1.5

故答案为:031.5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:E在线段CD上,EA、EB分别平分∠DAB和∠CBA,∠AEB=90°,设AD=,BC=,且

(1)求AD和BC的长;

(2)你认为AD和BC还有什么关系?并验证你的结论;

(3)取AB中点F,连接EF,且EF∥AD∥BC。若EF=,你能求出AB的长度吗?若能,请写出推理过程;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内部 不包含边界上的点.观察如图所示的中心在原点、一边平行于 x 轴的正方形:边长为 1 的正方形内部有 1 个整点,边长为 2 的正方形内部有 1 个整点,边长为 3 的正方形内部 有 9 个整点,…,则边长为 10 的正方形内的整点个数为(

A. 64 B. 100 C. 81 D. 121

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在平面直角坐标系中每个最小方格的边长均为1个单位P1P2P3,…均在格点上其顺序按图中“→”方向排列如:点P1(0,0),P2(0,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2),….根据这个规律求点P2018的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.

(1)求该店有客房多少间?房客多少人?

(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.

(1)求A、B两种品牌的化妆品每套进价分别为多少元?

(2)若销售1A品牌的化妆品可获利30元,销售1B品牌的化妆品可获利20元,根据市场需求,化妆品店老板决定,购进B品牌化妆品的数量比购进A品牌化妆品数量的2倍还多4套,且B品牌化妆品最多可购进40套,这样化妆品全部售出后,可使总的获利不少于1200元,问:有哪几种进货方案?如何进货能使成本最省

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,EBC的中点,连接AE并延长交DC的延长线于点F.

(1)求证:AB=CF;

(2)连接DE,若AD=2AB,求证:DEAF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积SABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.

(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为 ?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案