【题目】如图1,矩形铁片ABCD的长为2a,宽为a; 为了要让铁片能穿过直径为 的圆孔,需对铁片进行处理(规定铁片与圆孔有接触时铁片不能穿过圆孔);
(1)如图2,M、N、P、Q分别是AD、AB、BC、CD的中点,若将矩形铁片的四个角去掉,只余下四边形MNPQ, ①则此时铁片是什么形状;
②给出证明,并通过计算说明此时铁片都能穿过圆孔;
(2)如图3,过矩形铁片ABCD的中心作一条直线分别交边BC、AD于点E、F(不与端点重合),沿着这条直线将矩形铁片切割成两个全等的直角梯形铁片;
①当BE=DF= 时,判断直角梯形铁片EBAF能否穿过圆孔,并说明理由;
②为了能使直角梯形铁片EBAF顺利穿过圆孔,请直接写出线段BE的长度的取值范围.
【答案】
(1)①菱形,
②如图,过点M作MG⊥NP于点G,
∵M、N、P、Q分别是AD、AB、BC、CD的中点,
∴△AMN≌△BPN≌△CPQ≌△DMQ,
∴MN=NP=PQ=QM,
∴四边形MNPQ是菱形,
∵ ,
MN= ,
∴MG= ,
∴此时铁片能穿过圆孔;
(2)①如图,过点A作AH⊥EF于点H,过点E作EK⊥AD于点K,
显然AB= ,
故沿着与AB垂直的方向无法穿过圆孔,
过点A作EF的平行线RS,故只需计算直线RS与EF之间的距离即可,
∵BE=AK= ,EK=AB=a,AF= ,
∴KF= ,EF= ,
∵∠AHF=∠EKF=90°,∠AFH=∠EFK,
∴△AHF∽△EKF,
∴ ,可得AH= ,
∴该直角梯形铁片不能穿过圆孔;
② 或 .
【解析】(1)利用四条边相等的四边形为矩形来判定四边形为菱形,然后利用面积相等来求得菱形一边的高,与已知数据比较后判断是否能通过.(2)利用两三角形相似得到比例线段,进而求出点A到EF的距离,然后与已知线段比较,从而判定能否通过.
【考点精析】解答此题的关键在于理解直线与圆的三种位置关系的相关知识,掌握直线与圆有三种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点,以及对相似三角形的判定与性质的理解,了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
科目:初中数学 来源: 题型:
【题目】保护环境、低碳出行已渐渐成为人们的习惯.最近无为县城又引进了共享单车,只需要交点押金,就可以通过扫描二维码的方式解锁一辆停在路边的自行车,以极低的费用,轻松骑到目的地.王老师家与学校相距2km,现在每天骑共享单车到学校所花的时间比过去骑电动车多用4min.已知王老师骑电动车的速度是骑共享单车速度的1.5倍,则王老师骑共享单车的速度是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,(M2,N2),∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.
(1)求证:△ADE≌△CDB;
(2)若BC=,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=64°,∠ABC与∠ACD的平分线交于点A1 , 则∠A1=;∠A1BC与∠A1CD的平分线相交于点A2 , 得∠A2;…;∠An﹣1BC与∠An﹣1CD的平分线相交于点An , 要使∠An的度数为整数,则n的值最大为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】嫦娥四号探测器于2019年1月3日,成功着陆在月球背面,通过“鹊桥”中继星传回了世界第一张近距离拍摄的月背影像图,开启了人类月球探测新篇章.当中继星成功运行于地月拉格朗日L2点时,它距离地球约1500000km.用科学记数法表示数1500000为( )
A. 15×105 B. 1.5×106 C. 0.15×107 D. 1.5×105
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3.
(1)数轴上点A表示的数为________.
(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S.
①当S恰好等于原长方形OABC面积的一半时,数轴上点A′表示的数是多少?
②设点A的移动距离AA′=x.
(ⅰ)当S=4时,求x的值;
(ⅱ)D为线段AA′的中点,点E在线段OO′上,且OE=OO′,当点D,E所表示的数互为相反数时,求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,∠ABC=50°,∠ACB=80°,延长 CB 至 D,使 DB=BA,延长 BC 至 E,使 CE=CA,连接 AD 和 AE,求∠D,∠DAE 的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C是线段AB上除A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边三角形ACD和等边三角形BEC,连结AE交DC于M,连结BD交CE于N,AE与BD交于F
(1)求证:AE=BD;
(2)连结MN,仔细观察△MNC的形状,猜想△MNC是什么三角形?说出你的猜想,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)|-2|÷(-)+(-5)×(-2); (2)(-+)×(-24);
(3)15÷(-+); (4)(-2)2-|-7|-3÷(-)+(-3)3×(-)2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com