精英家教网 > 初中数学 > 题目详情

【题目】解答题。
(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.
证明:DE=BD+CE.

(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.

【答案】
(1)证明:∵BD⊥直线m,CE⊥直线m,

∴∠BDA=∠CEA=90°,

∵∠BAC=90°,

∴∠BAD+∠CAE=90°,

∵∠BAD+∠ABD=90°,

∴∠CAE=∠ABD,

∵在△ADB和△CEA中

∴△ADB≌△CEA(AAS),

∴AE=BD,AD=CE,

∴DE=AE+AD=BD+CE


(2)证明:成立.

∵∠BDA=∠BAC=α,

∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,

∴∠CAE=∠ABD,

∵在△ADB和△CEA中

∴△ADB≌△CEA(AAS),

∴AE=BD,AD=CE,

∴DE=AE+AD=BD+CE


(3)证明:△DEF是等边三角形.

由(2)知,△ADB≌△CEA,

BD=AE,∠DBA=∠CAE,

∵△ABF和△ACF均为等边三角形,

∴∠ABF=∠CAF=60°,

∴∠DBA+∠ABF=∠CAE+∠CAF,

∴∠DBF=∠FAE,

∵BF=AF

在△DBF和△EAF中

∴△DBF≌△EAF(SAS),

∴DF=EF,∠BFD=∠AFE,

∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,

∴△DEF为等边三角形


【解析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,
则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)与(1)的证明方法一样;(3)由前面的结论得到△ADB≌△CEA,则BD=AE,∠DBA=∠CAE,根据等边三角形的性质得∠ABF=∠CAF=60°,则∠DBA+∠ABF=∠CAE+∠CAF,则∠DBF=∠FAE,
利用“SAS”可判断△DBF≌△EAF,所以DF=EF,∠BFD=∠AFE,于是∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,根据等边三角形的判定方法可得到△DEF为等边三角形.
【考点精析】掌握等边三角形的判定是解答本题的根本,需要知道三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果两车同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a+b=5ab=1,则a2+b2的值为(

A. 6 B. 23 C. 24 D. 27

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长不等的正方形依次排列,第一个正方形的边长为1,第二个正方形的边长是第一个正方形边长的2倍,第三个正方形的边长是第二个正方形边长的2倍,依此类推,…….若阴影三角形的面积从左向右依次记为S1S2S3……Sn,则S4的值为_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于任何整数,多项式(n+5)2-n2一定是( )

A. 2的倍数 B. 5的倍数 C. 8的倍数 D. n的倍数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在△ABC中,∠ACB=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N.

(1)求证:MN=AM+BN.
(2)若过点C在△ABC内作直线MN,AM⊥MN于M,BN⊥MN于N,则AM、BN与MN之间有什么关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把方程x212x+330化成(x+m2n的形式,则mn的值是(  )

A.63B.6,﹣3C.63D.6,﹣3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一次函数y=2x+b的图象经过A(﹣1,1),则b= , 该函数图象经过点B(1,)和点C( , 0).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司员工的月工资情况统计如下表:

员工人数

2

4

8

20

8

4

月工资(元)

5000

4000

2000

1500

1000

700

(1)分别计算该公司员工月工资的平均数、中位数和众数;
(2)你认为用(1)中计算出的哪个数据来代表该公司员工的月工资水平更为合适?请简要说明理由.

查看答案和解析>>

同步练习册答案