精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O的直径,CO⊥AB于点O,CD是⊙O的切线,切点为D.连接BD,交OC于点E.
(1)求证:∠CDE=∠CED;
(2)若AB=13,BD=12,求DE的长.
(1)证明:连接OD,
∵CD是⊙O的切线,切点为D.
∴∠ODC=90°,
∵OD=OB,∴∠B=∠ODB,
∵OC⊥AB,
∴∠CED=∠OEB=90°-∠B,
∵∠CDE=90°-∠ODB,
∴∠CDE=∠CED;
(2)连接AD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∵AB=13,
∴OB=
13
2

∵∠ADB=∠BOE,∠B=∠B,
∴△ABD△EBO,
AB
EB
=
DB
BO

13
EB
=
12
13
2

∴EB=
169
24

∴DE=BD-EB=
119
24
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC,BC相切于点D,E.
(1)当AC=2时,求⊙O的半径;
(2)设AC=x,⊙O的半径为y,求y与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于D,OEAB交BC于E,连DE.
(1)求证:DE为⊙O切线;
(2)若⊙O的半径为3,DE=4,求AD之长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,平面直角坐标系中,⊙O的圆心在坐标原点,半径为2,点A的坐标为(2,2
3
)
,直线AB为⊙O的切线,B为切点.则B点的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在⊙O中,AB是直径,AD是弦,∠ADE=60°,∠C=30度.
(1)判断直线CD是否是⊙O的切线,并说明理由;
(2)若CD=3
3
,求BC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为(  )
A.40°B.50°C.65°D.75°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形AFCD是菱形,以AB为直径的圆O经过点D,E是⊙O上一点,且∠AED=45°.
(1)判断CD与⊙O的位置关系,并说明理由;
(2)若⊙O的直径为10cm,求AE的长.(sin67.5°=0.92,tan67.5°=2.41,精确到0.1)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=4
3
,以AC为直径的⊙O交AB于点D,点E是BC的中点,连接OD,OB,DE.
(1)求证:OD⊥DE;
(2)求sin∠ABO的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的弦,C为劣弧AB的中点.
(1)若⊙O的半径为5,AB=8,求tan∠BAC;
(2)若∠DAC=∠BAC,且点D在⊙O的外部,判断AD与⊙O的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案