精英家教网 > 初中数学 > 题目详情

【题目】我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1S2S3.若S1+S2+S315,则S2的值是_____

【答案】5

【解析】

将正方形MNKT的面积设为x,将其余八个全等的三角形面积一个设为y,

∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=15,

可得:S1=8y+x,S2=4y+x,S3=x,进而可得S1+S2+S3=3x+12y=15,解得3x+12y=10,x+4y==5,

因此S2=x+4y=.

将正方形MNKT的面积设为x,将其余八个全等的三角形面积一个设为y,

∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=15,

∴得出S1=8y+x,S2=4y+x,S3=x,

S1+S2+S3=3x+12y=15,

3x+12y=10,x+4y=,

所以S2=x+4y=.

故答案为:5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上点,连接EF.

(1)图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=3SEDF , 求AE的长;
(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.
①试判断四边形AEMF的形状,并证明你的结论;
②求EF的长;
(3)如图③,若FE的延长线与BC的延长线交于点N,CN=1,CE= ,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,∠A=30°,∠B=60°。

(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹)

(2)连接DE,求证:△ADE≌△BDE。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图信息,L1为走私船,L2为我公安快艇,航行时路程与时间的函数图象,问

(1)在刚出发时我公安快艇距走私船多少海里?

(2)计算走私船与公安快艇的速度分别是多少?

(3)写出L1,L2的解析式

(4)问6分钟时两艇相距几海里.

(5)猜想,公安快艇能否追上走私船,若能追上,那么在几分钟追上?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,设正方体ABCD-A1B1C1D1的棱长为1,黑甲壳虫从点A出发,白甲壳虫从点C1出发,它们以相同的速度分别沿棱向前爬行.黑甲壳虫爬行的路线是:AA1→A1D1→D1C1→C1C→CB→BA→AA1→A1D1…,白甲壳虫爬行的路线是:C1C→CB→BB1→B1C1→C1C→CB…,那么当黑、白两个甲壳虫各爬行完第2018条棱分别停止在所到的正方体顶点处时,它们之间的最短路程的平方是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化简下列各式:
(1)4(a+b)2﹣2(a+b)(2a﹣2b)
(2)( ﹣m+1)÷

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线y=ax2+bx+c分别交x轴于A(4,0)、B(﹣1,0),交y轴于点C(0,﹣3),过点A的直线y=﹣ x+3交抛物线于另一点D.

(1)求抛物线的解析式及点D的坐标;
(2)若点P位x轴上的一个动点,点Q在线段AC上,且Q到x轴的距离为 ,连接PC、PQ,当△PCQ的周长最小时,求出点P的坐标;
(3)如图2,在(2)的结论下,连接PD,在平面内是否存在△A1P1D1 , 使△A1P1D1≌△APD(点A1、P1、D1的对应点分别是A、P、D,A1P1平行于y轴,点P1在点A1上方),且△A1P1D1的两个顶点恰好落在抛物线上?若存在,请求出点A1的横坐标m,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为6,E为BC上的一点,BE=2,F为AB上的一点,AF=3,P为AC上一点,则PF+PE的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中画出直线y=x+1的图象,并根据图象回答下列问题:

(1)写出直线与x轴、y轴的交点坐标;

(2)求出直线与坐标轴围成的三角形的面积;

(3)若直线y=kx+b与直线y=x+1关于y轴对称,求k,b的值.

查看答案和解析>>

同步练习册答案