【题目】我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3.若S1+S2+S3=15,则S2的值是_____.
【答案】5
【解析】
将正方形MNKT的面积设为x,将其余八个全等的三角形面积一个设为y,
∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=15,
可得:S1=8y+x,S2=4y+x,S3=x,进而可得S1+S2+S3=3x+12y=15,解得3x+12y=10,x+4y==5,
因此S2=x+4y=.
将正方形MNKT的面积设为x,将其余八个全等的三角形面积一个设为y,
∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=15,
∴得出S1=8y+x,S2=4y+x,S3=x,
∴S1+S2+S3=3x+12y=15,
故3x+12y=10,x+4y=,
所以S2=x+4y=.
故答案为:5.
科目:初中数学 来源: 题型:
【题目】如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上点,连接EF.
(1)图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=3S△EDF , 求AE的长;
(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.
①试判断四边形AEMF的形状,并证明你的结论;
②求EF的长;
(3)如图③,若FE的延长线与BC的延长线交于点N,CN=1,CE= ,求 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,∠A=30°,∠B=60°。
(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹)
(2)连接DE,求证:△ADE≌△BDE。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图信息,L1为走私船,L2为我公安快艇,航行时路程与时间的函数图象,问
(1)在刚出发时我公安快艇距走私船多少海里?
(2)计算走私船与公安快艇的速度分别是多少?
(3)写出L1,L2的解析式
(4)问6分钟时两艇相距几海里.
(5)猜想,公安快艇能否追上走私船,若能追上,那么在几分钟追上?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,设正方体ABCD-A1B1C1D1的棱长为1,黑甲壳虫从点A出发,白甲壳虫从点C1出发,它们以相同的速度分别沿棱向前爬行.黑甲壳虫爬行的路线是:AA1→A1D1→D1C1→C1C→CB→BA→AA1→A1D1…,白甲壳虫爬行的路线是:C1C→CB→BB1→B1C1→C1C→CB…,那么当黑、白两个甲壳虫各爬行完第2018条棱分别停止在所到的正方体顶点处时,它们之间的最短路程的平方是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,抛物线y=ax2+bx+c分别交x轴于A(4,0)、B(﹣1,0),交y轴于点C(0,﹣3),过点A的直线y=﹣ x+3交抛物线于另一点D.
(1)求抛物线的解析式及点D的坐标;
(2)若点P位x轴上的一个动点,点Q在线段AC上,且Q到x轴的距离为 ,连接PC、PQ,当△PCQ的周长最小时,求出点P的坐标;
(3)如图2,在(2)的结论下,连接PD,在平面内是否存在△A1P1D1 , 使△A1P1D1≌△APD(点A1、P1、D1的对应点分别是A、P、D,A1P1平行于y轴,点P1在点A1上方),且△A1P1D1的两个顶点恰好落在抛物线上?若存在,请求出点A1的横坐标m,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中画出直线y=x+1的图象,并根据图象回答下列问题:
(1)写出直线与x轴、y轴的交点坐标;
(2)求出直线与坐标轴围成的三角形的面积;
(3)若直线y=kx+b与直线y=x+1关于y轴对称,求k,b的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com