精英家教网 > 初中数学 > 题目详情
如图,直线y=
k
3
x-k
分别与y轴、x轴相交于点A,点B,且AB=5,一个圆心在坐标原点,半径为1的圆,以0.8个单位/秒的速度向y轴正方向运动,设此动圆圆心离开坐标原点的时间为t(t≥0)(秒).
(1)求直线AB的解析式;
(2)如图1,t为何值时,动圆与直线AB相切;
(3)如图2,若在圆开始运动的同时,一动点P从B点出发,沿BA方向以1个单位/秒的速度运动,设t秒时点P到动圆圆心C的距离为s,求s与t的关系式;
(4)在(3)中,动点P自刚接触圆面起,经多长时间后离开了圆面?
(1)由
k
3
x-k=0,k≠0,得x=3,
∴B点坐标为(3,0),
∵AB=5,
∴A点坐标为(0,4),
∴直线AB的解析式为y=-
4
3
x+4;

(2)设t秒时圆与AB相切,此时圆心为C1或C2,切点为D1,D2,如图所示,连接C1D1,C2D2
由△AC1D1△ABO,得
AC1
AB
=
C1D1
OB

即:
4-0.8t
5
=
1
3

t=
35
12

同理由△AC2D2△ABO,
可求得t=
85
12

∴当t=
35
12
秒或
85
12
秒时,圆与直线AB相切;

(3)如图2,①当t=0时,s=3,
②当0<t<5时,设t秒时动圆圆心为C,连接PC.
OC
BP
=
0.8t
t
=
4
5
=
AO
AB

∴PCOB,
PC
OB
=
AC
AO
,即
s
3
=
4-0.8t
4

s=-
3
5
t+3

③当t=5时,s=0,
④当t>5时,设动圆圆心为C1,动点P在P1处,连接C1P1
由②同理可知P1C1OB.
s
3
=
0.8t-4
4
,即s=
3
5
t-3

又当t=0或5时,②中s=3或0,
所以综上所述:
当0≤t≤5时,s=-
3
5
t+3

当t>5时,s=
3
5
t-3


(4)当动点P与圆面刚接触时,或刚离开时,s=1,
当s=1时,由s=-
3
5
t+3
,代入得t=
10
3

由s=
3
5
t-3
,代入得t=
20
3
20
3
-
10
3
=
10
3
(秒),
∴动点P自刚接触圆面起,经
10
3
秒后离开了圆面.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,直线y=kx+6与x轴分别交于E,F,点E坐标为(-8,0),点A的坐标为(-6,0),P(x,y)是直线y=kx+6上的一个动点.
(1)求k的值;
(2)当点P在第二象限内运动过程中,试写出三角形OPA的面积s与x的函数关系式,并写出自变量x的取值范围;
(3)探究:当P运动到什么位置时,三角形OPA的面积为
27
8
,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某班师生组织植树活动,上午8时从学校出发,到植树地点后原路返校,如图为师生离校路程s与时间t之间的图象.请回答下列问题:

(1)问师生何时回到学校?
(2)如果运送工具的三轮车比师生迟半小时出发,与师生同路匀速前进,早半个小时到达植树地点,请在图中,画出该三轮车离校路程s与时间t之间的图象,并结合图象直接写出三轮车追上师生时离学校的路程;
(3)如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求13时至14时之间返回学校,往返平均速度分别为每小时8km、6km.试通过计算说明植树点选在距离学校多远较为合适.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点A在y轴上,点B在x轴上,且OA=OB=1,经过原点O的直线l交线段AB于点C,过C作OC的垂线,与直线x=1相交于点P,现将直线L绕O点旋转,使交点C从A向B运动,但C点必须在第一象限内,并记AC的长为t,分析此图后,对下列问题作出探究:
(1)当△AOC和△BCP全等时,求出t的值;
(2)通过动手测量线段OC和CP的长来判断它们之间的大小关系并证明你得到的结论;
(3)①设点P的坐标为(1,b),试写出b关于t的函数关系式和变量t的取值范围.
②求出当△PBC为等腰三角形时点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知y+2与x成正比例,且x=-2时,y=0,则y与x的关系式是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,O为坐标原点,B(5,0),M为等腰梯形OBCD底边OB上一点,OD=BC=2,∠DMC=∠DOB=60度.
(1)求点D,B所在直线的函数表达式;
(2)求点M的坐标;
(3)∠DMC绕点M顺时针旋转α(0°<α<30°后,得到∠D1MC1(点D1,C1依次与点D,C对应),射线MD1交边DC于点E,射线MC1交边CB于点F,设DE=m,BF=n.求m与n的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,我们把由两条射线AE,BF和以AB为直径的半圆所组成的图形叫作图形C(注:不含AB线段).已知A(-1,0),B(1,0),AEBF,且半圆与y轴的交点D在射线AE的反向延长线上.
(1)求两条射线AE,BF所在直线的距离;
(2)当一次函数y=x+b的图象与图形C恰好只有一个公共点时,写出b的取值范围;
当一次函数y=x+b的图象与图形C恰好只有两个公共点时,写出b的取值范围;
(3)已知?AMPQ(四个顶点A,M,P,Q按顺时针方向排列)的各顶点都在图形C上,且不都在两条射线上,求点M的横坐标x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=kx+6分别与x轴、y轴相交于点E和点F,点E的坐标为(-8,0),点A的坐标为(0,3).
(1)求k的值;
(2)若点P(x,y)是第二象限内的直线上的一个动点,当点P运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;
(3)探究:当P运动到什么位置时,△OPA的面积为
27
8
,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知正方形的面积为9x2+36xy+36y2(x>0,y>0),且这个正方形的边长为12.
(1)求x的取值范围;
(2)若x≥2,求y的最大值;
(3)若x+y≤3,求x的取值范围.

查看答案和解析>>

同步练习册答案