精英家教网 > 初中数学 > 题目详情
如图1,点C在线段AB上,分别以AC、BC为边在线段AB的同侧作正方形ACDE和BCMN,连结AM、BD.
(1)AM与BD有怎样的关系?为什么?
(2)如果将正方形BCMN绕点C逆时针旋转锐角α,其它不变(如图2).(1)中所得的结论是否仍
然成立?并说明理由.
分析:(1)利用正方形的性质和已知条件证明△AMC≌△DBC,从而求出AM=BD;
(2)如果将正方形BCMN绕点C逆时针旋转锐角α,其它不变(1)中所得的结论任然成立,先求出∠ACM=∠DCB,然后利用“边角边”证明△AMC和△DBC全等,再根据全等三角形对应边相等即可得证.
解答:(1)∵四边形ACDE和四边形BCMN都为正方形,
∴AC=DC,∠ACD=∠BCD=90°,BC=CM,
在△AFC和△DBC中,
AD=DC
∠ACM=∠DCB
BC=CM

∴△AMC≌△DBC(SAS).
∴AM=BD;
(2)如果将正方形BCMN绕点C逆时针旋转锐角α,其它不变(1)中所得的结论任然成立,
理由如下:
AM=BD仍然成立.
理由如下:在正方形ABCE和正方形BCMN中,AB=CD,CM=BC,∠ACD=∠DCB=90°,
∵∠ACM=90°-∠MCD,
∠DCB=90°-∠MCD,
∴∠ACM=∠CDCB,
在△ACM和△DCB中,
AC=CD
∠ACM=∠DCB
CM=BC

∴∴△AMC≌△DBC(SAS).
∴AM=BD.
点评:本题考查了正方形的性质,全等三角形的判定与性质以及旋转等知识,熟练利用正方形的性质得出是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知锐角△ABC中,BC=30,BC边上的高h=20
(1)如图1,△ABC的内接正方形的两顶点在BC上,另两顶点分别在AC,AB上,求这个正方形的面积;
(2)如图2,点M在线段AB上(不同于A,B),MN∥BC交AC于N,以MN为边向下作矩形MNPQ,且满足MQ=2MN,设MN=x,矩形MNPQ和△ABC的公共部分的面积为y,直接写出y与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•松江区模拟)已知:点A、B都在半径为9的圆O上,P是射线OA上一点,以PB为半径的圆P与圆O相交的另一个交点为C,直线OB与圆P相交的另一个交点为D,cos∠AOB=
23

(1)求:公共弦BC的长度;
(2)如图,当点D在线段OB的延长线上时,设AP=x,BD=y,求y关于x的函数解析式,并写出它的定义域;
(3)如果直线PD与射线CB相交于点E,且△BDE与△BPE相似,求线段AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠BAC=90°,AB=AC=10,点D在BC所在的直线上运动,作∠ADE=45°(A,D,E按逆时针方向).如图,若点D在线段BC上运动,DE交AC于E.
(1)求证:△ABD∽△DCE;
(2)若点D的运动速度为1个单位长度每秒时,设y=AD2,点D的运动时间为t,求y与t的函数关系,并求当△ADE是等腰三角形时AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,已知AB=8cm,线段AM为BC边上的中线.点N在线段AM上,且MN=3cm,动点D在直线AM上运动,连接CD,△CBE是由△CAD旋转得到的.以点C圆心,以CN为半径作⊙C与直线BE相交于点P、Q两点.

(1)填空:∠DCE=
60
60
度,CN=
5
5
cm,AM=
4
3
4
3
cm.
(2)如图1当点D在线段AM上运动时,求出PQ的长.
(3)当点D在MA的延长线上时,请在图2中画出示意图,并直接写出PQ=
6
6
cm.
当点D在AM的延长线上时,请在图3中画出示意图,并直接写出PQ=
6
6
cm.

查看答案和解析>>

同步练习册答案