精英家教网 > 初中数学 > 题目详情

如图,圆柱底面半径为2cm,高为9πcm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线的最短距离.

解:圆柱体的展开图如图所示:用一棉线从A顺着圆柱侧面绕3圈到B的运动最短路线是:AC→CD→DB;
即在圆柱体的展开图长方形中,将长方形平均分成3个小长方形,A沿着3个长方形的对角线运动到B的路线最短;
∵圆柱底面半径为2cm,
∴长方形的宽即是圆柱体的底面周长:2π×2=4π(cm);
又∵圆柱高为9πcm,
∴小长方形的一条边长是9π÷3=3π(cm);
根据勾股定理求得AC=CD=DB==5π(cm);
∴AC+CD+DB=15πcm;
故答案为:15π.
分析:要求圆柱体中两点之间的最短路径,最直接的作法,就是将圆柱体展开,然后利用两点之间线段最短解答.
点评:本题主要考查了圆柱的计算、平面展开--路径最短问题.圆柱的侧面展开图是一个长方形,此长方形的宽等于圆柱底面周长,长方形的长等于圆柱的高.本题就是把圆柱的侧面展开成长方形,“化曲面为平面”,用勾股定理解决.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、如图,圆柱底面半径为2cm,高为9πcm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短为
15π
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,圆柱底面半径为4,高为18π,点A,B分别是圆柱两底面圆周上的点,且A、B在同一 母线上,用一棉线从A顺着圆柱侧面绕3圈到B,则棉线的最短距离为
30πcm
30πcm

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,圆柱底面半径为2cm,高为9πcm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线的最短距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,圆柱底面半径为
2
π
cm,高为9cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为(  )
A、12cm
B、
97
cm
C、15cm
D、
21
cm

查看答案和解析>>

科目:初中数学 来源:2012年四川省凉山州越西二中中考数学一模试卷(解析版) 题型:填空题

如图,圆柱底面半径为2cm,高为9πcm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短为    cm.

查看答案和解析>>

同步练习册答案