精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=x2+bx+c的图象过点A﹣30)和点B10),且与y轴交于点CD点在抛物线上且横坐标是﹣2

1)求抛物线的解析式;

2)抛物线的对称轴上有一动点P,求出PA+PD的最小值.

【答案】(1)y=x2+2x3;(2

【解析】试题分析: (1)把A(-3,0)和点B(1,0),代入y=x2+bx+c,建立关于b,c的二元一次方程组,求出b,c即可;

(2)先求出抛物线的对称轴,又因为A,B关于对称轴对称,所以连接BD与对称轴的交点即为所求P点.

试题解析:

(1)A(-3,0),B(1,0)代入y=x2+bx+c,

,解得

y=x2+2x-3;

(2)y=x2+2x-3=(x+1)2-4

∴对称轴x=-1,

又∵A,B关于对称轴对称,

∴连接BD与对称轴的交点即为所求P.

DDFx轴于Fx=-2代入y=x2+2x-3

y=4-4-3=-3

D(-2,-3)

DF=3BF=1-(-2)=3

RtBDF,BD=

PA=PB,

PA+PD=BD=3

PA+PD的最小值为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】探究并解决问题:

探究

倍延三角形的一条中线,我们可以发现一些有用的结论.

已知,如图①所示,ADABC的中线,延长ADE,使AD=DE,连接BECE.

1)求证:ABCE.

2)请再写出两条不同类型的结论.

解决问题

如图所示②,分别以ABC的边ABAC为边,向三角形的外侧作两个等腰直角三角形,AB=AD,AC=AE,BAD = CAE=90°,点MBC的中点,连接DE,AM,试问线段AMDE之间存在什么关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC的周长为16D EF分别为AB BCAC的中点,MNP分别为DE EFDF的中点,则MNP的周长为____;如果ABCDEFMNP分别为第1个,第2个,第3个三角形,按照上述方法继续做三角形,那么第n个三角形的周长是___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,AB=2,B=60°,MAB的中点.动点P在菱形的边上从点B出发,沿B→C→D的方向运动,到达点D时停止.连接MP,设点P运动的路程为x,MP 2=y,则表示yx的函数关系的图象大致为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲乙两组学生成绩如下,甲组:30,60,6060,60,60,70,90,90,100 ;乙组:50,60,60,60,70,70,70,70,80,90.

1)以上成绩统计分析表中a=______分,b=______分,c=_______分;

组别

平均数

中位数

方差

合格率

优秀率

甲组

68

a

376

30%

乙组

b

c

90%

2)小亮同学说:这次竞赛我得了70分,在我们小组中属于中游略偏上,观察上面表格判断,小亮可能是甲乙哪个组的学生?并说明理由

3)计算乙组的方差和优秀率,如果你是该校数学竞赛的教练员,现在需要你选一组同学代表学校参加复赛,你会选择哪一组?并说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种流感病毒,有一人患了这种流感,在每轮传染中一人将平均传给x人.

1)求第一轮后患病的人数;(用含x的代数式表示)

2)在进入第二轮传染之前,有两位患者被及时隔离并治愈,问第二轮传染后总共是否会有21人患病的情况发生,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.

1)若每个房间定价增加40元,则这个宾馆这一天的利润为多少元?

2)若宾馆某一天获利10640元,则房价定为多少元?

3)房价定为多少时,宾馆的利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.

(1)求足球和篮球的单价各是多少元?

(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系中,A04),点P从原点O开始向x轴正方向运动,设P点横坐标为m,以点P为圆心,PO为半径作⊙Px 轴另一点为C,过点A作⊙P的切线交 x轴于点B,切点为Q

1)如图1,当B点坐标为(30)时,求m

2)如图2,当△PQB为等腰三角形时,求m

3)如图3,连接AP,作PE⊥APAB于点E,连接CE,求证:CE是⊙P的切线;

4)若在x轴上存在点M80),在点P整个运动过程中,求MQ的最小值.

查看答案和解析>>

同步练习册答案