精英家教网 > 初中数学 > 题目详情
15.如图,已知∠A=30°,AB=2cm,点P为∠ABC的边BC上一动点,则当BP=$\sqrt{3}$或$\frac{4}{3}$$\sqrt{3}$cm时,△BAP为直角三角形.

分析 由于直角顶点不能确定,故应分∠APB=90°与∠BAP=90°两种情况进行分类讨论.

解答 解:当∠APB=90°时,
∵∠B=30°,AB=2cm,
∴BP1=AB•cos30°=2×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$;
当∠BAP=90°时,
∵∠B=30°,AB=2cm,
∴BP2=$\frac{AB}{cos30°}$=$\frac{2}{\frac{\sqrt{3}}{2}}$=$\frac{4}{3}$$\sqrt{3}$.
故答案为:$\sqrt{3}$或$\frac{4}{3}$$\sqrt{3}$.

点评 本题考查的是勾股定理的逆定理,在解答此题时要注意分类讨论,不要漏解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

5.如图,在?ABCD中,AD=12,AC=8,BD=16.△BOC的周长是24.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.先化简,再求值:(x+y)(x-y)-(x-y)2-y(x-2y),其中x=2015,y=$\frac{1}{2015}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.若顺次连接平行四边形ABCD各边中点所得四边形必定是(  )
A.矩形B.平行四边形C.正方形D.菱形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.“勤劳”是中华民族的传统美德,我校要求同学们在家里帮助父母做些力所能及的家务,王刚同学在本学期开学初对部分同学寒假在家做家务的时间进行了抽样调查(时间取整数小时),所得数据统计如表:
时间分组0.5~20.520.5~40.540.5~60.560.5~80.580.5~100.5
频数2025301510
(1)抽取样本的容量是100.
(2)样本的中位数所在时间段的范围是40.5~60.5.
(3)若我学校共有学生1600人,那么大约有多少学生在寒假做家务的时间在40.5~100.5小时之间?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.下列调查中,适合采用全面调查(普查)方式的是(  )
A.对某班50名同学体重情况的调查
B.对端午节期间市场上粽子质量情况的调查
C.对闽江水质情况的调查
D.对某类烟花爆竹燃放安全情况的调查

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.已知x的一半与1的差小于2,用不等式表示为$\frac{1}{2}$x-1<2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.在有25名男生和24名女生的班级中,随机抽签确定一名学生代表,则下列说法正确的是(  )
A.男、女生做代表的可能性一样大
B.男生做代表的可能性较大
C.女生做代表的可能性较大
D.男、女生做代表的可能性的大小不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.化简计算:
(1)$\sqrt{27}$-15$\sqrt{\frac{1}{3}}$+$\frac{1}{4}\sqrt{48}$+$\sqrt{12}$
(2)2a2$\sqrt{\frac{27}{a}}$+6$\sqrt{\frac{3}{4}{a}^{3}}$
(3)$\sqrt{24}$×$\sqrt{\frac{1}{3}}$-4×$\sqrt{\frac{1}{8}}$×(1-$\sqrt{2}$)0

查看答案和解析>>

同步练习册答案