精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y=-x2+2x+3交轴于A,B两点(点A在点B的左侧),与y轴交于点C
(1)求点A、B、C的坐标;
(2)若点M为抛物线的顶点,连接BC、CM、BM,求△BCM的面积;
(3)连接AC,在轴上是否存在点P,使△ACP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

【答案】分析:(1)根据-x2+2x+3=0,解得x1=3、x2=-1,即点A(-1,0),B(3,0),根据抛物线y=-x2+2x+3交y轴于点C,可知当x=0时,y=3,所以C(0,3)
(2)抛物线y=-x2+2x+3的点顶为M,根据顶点公式可知M(1,4),过点M作ME⊥AB于E,则ME=4,OE=1,BE=2,OC=3,所以S△BCM=S四边形COBM-S△BOC=3
(3)分情况讨论,共有4个点.
(1)以AC为腰:
①当以点A为圆心,AC长为半径画弧交x轴于点P1,p2(p1在p2的右侧)
可知P1,0)P2(-,0),交y轴于一点p5;②以点C为圆心,AC为半径画弧交x轴于点P3,点P3与点A关于y轴对称,则点P3坐标为(1,0),交y轴于两点p6,p7
(2)以AC为底边:作AC的垂直平分线交x轴于点p4垂足为F,利用△AOC∽△AFP4可求AP4=5,OP4=5-1=4,所以P4(4,0).
解答:解:(1)∵抛物线y=-x2+2x+3交x轴于A,B两点
∴-x2+2x+3=0,
解得x1=3,x2=-1
∴点A(-1,0),B(3,0)
又∵抛物线y=-x2+2x+3交y轴于点C,
∴点C(0,3)

(2)∵抛物线y=-x2+2x+3的顶点为M
∴x==1
y=
∴M(1,4)
过点M作ME⊥AB于E,则ME=4,OE=1,
∴BE=OB-OE=3-1=2,OC=3
∴S△BCM=S△△BOC=3.

(3)存在点P
1)以AC为腰:
①当以点A为圆心,AC长为半径画弧交x轴于点P1,p2(p1在p2的右侧)
AC==
∴P1O=,P2O=
∴P1,0)P2(-,0)
交y轴于p5与C点关于x轴对称,坐标为:(0,-3)
②以点C为圆心,AC为半径画弧交x轴于点P3
∴点P3与点A关于y轴对称,则点P3坐标为(1,0),
交y轴于点p6,p7两点,p6(0,3-),p7(0,3+
2)以AC为底边:作AC的垂直平分线交x轴于点p4垂足为F,则AF=
∵∠AFP4=∠AOC=90°
∠CAO=∠P4AF
∴△AOC∽△AFP4

=
∴AP4=5,
∴OP4=5-1=4,
∴P4(4,0)
∴点P的坐标为:P1,0)P2(-,0)P3(1,0),P4(4,0),p5(0,-3),p6(0,-3),p7(0,3+).
点评:本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点精英家教网C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P的坐标,若不存在,请说明理由.
(4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)精英家教网、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)点P是抛物线对称轴上一点,若△PAB∽△OBC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

同步练习册答案