精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠ABC=45°,AD,BE分别为BC、AC边上的高,AD、BE相交于点F,连接CF,则下列结论:①BF=AC; ②∠FCD=45°; ③若BF=2EC,则△FDC周长等于AB的长;其中正确的有(  )

A. 0 B. 1 C. 2 D. 3

【答案】D

【解析】

证明△ADC≌△BDF即可一一判断.

解:∵△ABC中,AD,BE分别为BC、AC边上的高,∠ABC=45°,

∴AD=BD,∠DAC和∠FBD都是∠ACD的余角,

而∠ADB=∠ADC=90°,

∴△BDF≌△ADC,

∴BF=AC,故①正确,

∴FD=CD,

∴∠FCD=∠CFD=45°,故②正确;

BF=2EC,根据①得BF=AC,

∴AC=2EC,

EAC的中点,

∴BE为线段AC的垂直平分线,

∴AF=CF,BA=BC,

∴AB=BD+CD=AD+CD=AF+DF+CD=CF+DF+CD,

即△FDC周长等于AB的长,故③正确.

故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.

(1)求此二次函数解析式;
(2)连接DC、BC、DB,求证:△BCD是直角三角形;
(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,SABCD=24,AE平分∠BAC,交BC于E,沿AE将△ABE折叠,点B的对应点为F,连接EF并延长交AD于G,EG将ABCD分为面积相等的两部分.则SABE=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明购买了一部新手机,到某通讯公司咨询移动电话资费情况,准备办理入网手续,该通讯公司工作人员向他介绍两种不同的资费方案:

方案代号

月租费(元)

免费时间(分)

超过免费时间的通话费(元/分)

10

0

0.20

30

80

0.15


(1)分别写出方案一、二中,月话费(月租费与通话费的总和)y(单位:元)与通话时间x(单位:分)的函数关系式;
(2)画出(1)中两个函数的图象;
(3)若小明月通话时间为200分钟左右,他应该选择哪种资费方案最省钱.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠BAD=∠CAE,AB=AD,AC=AE.且E,F,C,D在同一直线上.

(1)求证:△ABC≌△ADE;

(2)若∠B=30°,∠BAC=100°,点F是CE的中点,连结AF,求∠FAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法:①如果两个三角形全等,那么这两个三角形一定成轴对称;②数轴上的点和实数一一对应;③3的一个平方根;④两个无理数的和一定为无理数;⑤6.9103精确到十分位;⑥ 的平方根是4.其中正确的__________ .(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是(
A.70°
B.35°
C.40°
D.50°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,E=115°,则∠BAE的度数为何?(  )

A. 115 B. 120 C. 125 D. 130

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

(材料)如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°DAE,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于RtBAERtBFE的面积之和,根据图形我们就能证明勾股定理: .

(请回答)如图是任意符合条件的两个全等的RtBEARtACD拼成的,你能根据图示再写一种证明勾股定理的方法吗?

查看答案和解析>>

同步练习册答案