精英家教网 > 初中数学 > 题目详情
阅读下列材料:
1
1+
2
=
2
-1
(1+
2
)(
2
-1)
=
2
-1,
1
2
+
3
=
3
-
2
(
2
+
3
)(
3
-
2
)
=
3
-
2
1
3
+2
=
2-
3
(
3
+2)(2-
3
)
=2-
3
1
2+
5
=
5
-2
(2+
5
)(
5
-2)
=
5
-2.读完以上材料,请你计算下列各题:
(1)
1
3+
10
=
10
-3
10
-3

(2)
1
n
+
n+1
=
n+1
-
n
n+1
-
n

(3)
1
1+
2
+
1
2
+
3
+
1
3
+2
+…+
1
2010
+
2011
=
2011
-1
2011
-1
分析:(1)由已知条件观察分母的变化,可以得出分母是连续两个有理数的算术平方根的和结果是较大与较小两算术平方根的差,即可得出所求答案.
(2)由已知条件观察分母的变化,可以得出分母是连续两个有理数的算术平方根的和结果是较大与较小两算术平方根的差,即可得出所求答案.
(3)根据以上规律求出所有数的和即可.
解答:解:(1)∵阅读下列材料:
1
1+
2
=
2
-1
(1+
2
)(
2
-1)
=
2
-1,
1
2
+
3
=
3
-
2
(
2
+
3
)(
3
-
2
)
=
3
-
2
1
3
+2
=
2-
3
(
3
+2)(2-
3
)
=2-
3
1
2+
5
=
5
-2
(2+
5
)(
5
-2)
=
5
-2.
1
3+
10
=
10
-3;

(2)故:
1
n
+
n+1
=
n+1
-
n


(3)
1
1+
2
+
1
2
+
3
+
1
3
+2
+…+
1
2010
+
2011

=
2
-1+
3
-
2
+4-
3
+…+
2011
-
2010

=
2011
-1.…(4分)
故答案为:(1)
10
-3,(2)
n+1
-
n
,(3)
2011
-1.
点评:此题主要考查了数字变化规律,注意从已知入手,分析数据真正的变化情况,是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下列材料:
1
1×3
=
1
2
(1-
1
3
)
1
3×5
=
1
2
(
1
3
-
1
5
)
1
5×7
=
1
2
(
1
5
-
1
7
)
1
2003×2005
=
1
2
(
1
2003
-
1
2005
)


1
1×3
+
1
3×5
+
1
5×7
+…+
1
2003×2005

=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
2003
-
1
2005
)

解答下列问题:
(1)在和式
1
1×3
+
1
3×5
+
1
5×7
+…
中,第5项为
 
,第n项为
 
,上述求和的想法是:将和式中的各分数转化为两个数之差,使得首末两项外的中间各项可以
 
,从而达到求和目的.
(2)利用上述结论计算
1
x(x+2)
+
1
(x+2)(x+4)
+
1
(x+4)(x+6)
+…+
1
(x+2004)(x+2006)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:
1
1×3
=
1
2
(1-
1
3
)
1
3×5
=
1
2
(
1
3
-
1
5
)
1
5×7
=
1
2
(
1
5
-
1
7
)

1
2007×2009
=
1
2
(
1
2007
-
1
2009
)

1
1×3
+
1
3×5
+
1
5×7
+…+
1
2007×2009

=
1
2
(
1
1
-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
2007
-
1
2009
)

=
1
2
×(1-
1
2009
)

=
1004
2009

解答下列问题:
(1)在和式
1
1×3
+
1
3×5
+
1
5×7
+…
中,第5项为
 
,第n项为
1
(2n-1)(2n+1)
,上述求和的想法是:将和式中的各分数转化为两个数之差,使得首末两项外的中间各项可以
 
,从而达到求和目的.
(2)利用上述结论计算
1
x(x+2)
+
1
(x+2)(x+4)
+
1
(x+4)(x+6)
+…+
1
(x+2008)(x+2010)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料:
1
1×3
=
1
2
(1-
1
3
),
1
3×5
=
1
2
(
1
3
-
1
5
),
1
5×7
=
1
2
(
1
5
-
1
7
)…
1
17×19
=
1
2
(
1
17
-
1
19
)

1
1×3
+
1
3×5
+
1
5×7
+
1
7×9
+…+
1
17×19
=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
17
-
1
19
)=
9
19

解答问题:
(1)在式
1
1×3
+
1
3×5
+
1
5×7
中,第六项为
 
,第n项为
 
,上述求和的想法是通过逆用
 
法则,将式中各分数转化为两个实数之差,使得除首末两项外的中间各项可以
 
从而达到求和的目的;
(2)解方程
1
x(x+2)
+
1
(x+2)(x+4)
+…+
1
(x+8)(x+10)
=
5
24

查看答案和解析>>

科目:初中数学 来源: 题型:

阅读下列材料:
1
1×3
=
1
2
(1-
1
3
)
1
3×5
=
1
2
(
1
3
-
1
5
)
1
5×7
=
1
2
(
1
5
-
1
7
)
,…
受此启发,请你解下面的方程:
1
x(x+3)
+
1
(x+3)(x+6)
+
1
(x+6)(x+9)
=
3
2x+18

查看答案和解析>>

同步练习册答案