分析 因n段之和为定值144cm,故欲n尽可能的大,必须每段的长度尽可能小,这样依题意可构造一个数列.
解答 解:∵每段的长为不小于1(cm)的整数,
∴最小的边最小是1,
∵三条线段不能构成三角形,则第二段是1,第三段是2,第四段与第二、第三段不能构成三角形,则第四边最小是3,第五边是5,依次是8,13,21,34,55,
再大时,各个小段的和大于150cm,不满足条件.
上述这些数之和为143,与144相差1,故可取1,1,2,3,5,8,13,21,34,56,
这时n的值最大,n=10.
故答案为:10
点评 本题考查了三角形三边关系,难度较大,解答本题的关键是保证前两项最短的情况下,使第三项等于前两项之和,这样便不能构成三角形.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com