精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,在△ABC中,D为AB边上一点,∠A=36°,AC=BC,AC2=AD•AB.
(1)试说明:△ADC和△BDC都是等腰三角形;
(2)若AB=1,求AC的值.
分析:(1)可通过证角相等来证三角形是等腰三角形.根据给出的比例关系式子,我们不难得出三角形ACD和ABC相似.那么可得出∠ACD=∠B,AC=DC,通过等边对等角我们可得出∠A=∠ACD,那么三角形ACD就是等腰三角形.证三角形CDB可通过角的度数进行证明(根据∠A的度数和三角形的内角和).
(2)由于AC=BC,而(1)中也已经得出BC=BD,那么AC=BD,可用AC表示出AD,根据题中给出的比例关系求出AC的值.
解答:(1)证明:∵AC2=AD•AB,∠A=∠A,
∴△ACD∽△ABC,
∴∠ACD=∠B=36°,
∵AC=BC,
∴∠A=∠ACD=∠B=36°,
∴三角形ADC是等腰三角形,
∵∠BDC=∠A+∠ACD=72°,
∵∠B=36°,
∴∠BCD=180-36-72=72°,
∴∠BDC=∠BCD,
∴三角形BCD是等腰三角形.

(2)解:∵AC=BC,BD=BC,
∴AC=BD,
∴AD=1-AC,
∵AC2=AD•AB,
∴AC2=1-AC,
解得:AC=
-1+
5
2
(AC>0).
点评:本题主要考查了相似三角形的判定和等腰三角形的判定,根据题中的条件得出相似三角形进而得出对应角相等是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案