精英家教网 > 初中数学 > 题目详情
阅读下面的材料:
如图(1),在以AB为直径的半圆O内有一点P,AP、BP的延长线分别交半圆O于点C、D.
求证:AP•AC+BP•BD=AB2
证明:连接AD、BC,过P作PM⊥AB,则∠ADB=∠AMP=90°,
∴点D、M在以AP为直径的圆上;同理:M、C在以BP为直径的圆上.
由割线定理得:AP•AC=AM•AB,BP•BD=BM•BA,
所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2
当点P在半圆周上时,也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:
(1)如图(2)当点P在半圆周外时,结论AP•AC+BP•BD=AB2是否成立?为什么?
(2)如图(3)当点P在切线BE外侧时,你能得到什么结论?将你得到的结论写出来.
(1)成立.
证明:如图(2),∵∠PCM=∠PDM=90°,
∴点C、D在以PM为直径的圆上,
∴AC•AP=AM•AD,BD•BP=BM•BC,
∴AC•AP+BD•BP=AM•MD+BM•BC;
∵AM•MD+BM•BC=AB2
∴AP•AC+BP•BD=AB2

(2)如图(3),过P作PM⊥AB,交AB的延长线于M,连接AD、BC,则C、M在以PB为直径的圆上;
∴AP•AC=AB•AM①,
∵D、M在以PA为直径的圆上,
∴BP•BD=AB•BM②,
由图象可知:AB=AM-BM③
由①②③可得:AP•AC-BP•BD=AB•(AM-BM)=AB2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知直角坐标系中,A(0,4)、B(4,4)、C(6,2),
写出经过A、B、C三点的圆弧所在圆的圆心M的坐标:(______,______)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,PA为⊙O的切线,A为切点,割线PBC过圆心O,∠ACP=30°,OC=1cm,则PA的长为(  )
A.
2
cm
B.
3
cm
C.2cmD.3cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,MN是⊙O的切线,切点为A,MN平行于弦CD,弦AB交CD于点E.
求证:AC2=AE•AB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的直径,半径OC⊥AB,D为AB延长线上一点,过D作⊙O的切线,E为切点,连接CE交AB于点F.
(1)求证:DE=DF;
(2)连AE,若OF=1,BF=3,求DE长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知:如图,∠MAN=30°,O为边AN上一点,以O为圆心,2为半径作⊙O,交AN于D,E两点,当AD=______时,⊙O与AM相切.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若∠OAB=30°,OA=10cm,则以O为圆心,6cm为半径的圆与直线AB的位置关系是(  )
A.相交B.相切C.相离D.不能确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是⊙O的内接正方形,延长AB到E,使BE=AB,连接CE.
(1)求证:直线CE是⊙O的切线;
(2)连接OE交BC于点F,若OF=2,求EF的长.

查看答案和解析>>

同步练习册答案