分析 ①由条件证明△ABD≌△ACE,就可以得到结论;
②由△ABD≌△ACE就可以得出∠ABD=∠ACE,就可以得出∠BDC=90°而得出结论;
③由条件知∠ABC=∠ABD+∠DBC=45°,由∠DBC+∠ACE=90°,就可以得出结论.
解答 解:①∵∠BAC=∠DAE,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE.
在△ABD和△ACE中,
$\left\{\begin{array}{l}{AD=AE}\\{∠BAD=∠CAE}\\{AB=AC}\end{array}\right.$,
∴△ABD≌△ACE(SAS),
∴BD=CE.故①正确;
∵△ABD≌△ACE,
∴∠ABD=∠ACE.
∵∠CAB=90°,
∴∠ABD+∠DBC+∠ACB=90°,
∴∠DBC+∠ACE+∠ACB=90°,
∴∠BDC=180°-90°=90°.
∴BD⊥CE;故②正确;
③∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ABD+∠DBC=45°.
∴∠ACE+∠DBC=45°,故③正确,
故答案为:①②③
点评 本题考查了全等三角形的性质和判定的应用,垂直的性质和判定的应用,等腰直角三角形的性质的应用,能利用全等三角形的性质和判定求解是解此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | AB∥PC | B. | △ABC的面积等于△BCP的面积 | ||
C. | AC=BP | D. | △ABC的周长等于△BCP的周长 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 8cm | B. | 10cm | C. | 12cm | D. | 16cm |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com