精英家教网 > 初中数学 > 题目详情

【题目】某中学为了丰富学生的课余生活,计划购买排球和篮球供球类兴趣小组活动使用,若购买4个篮球和3个排球需用94元;若购买16个篮球和5个排球需用306元;

1)求一个篮球和一个排球各多少元;

2)该中学决定购买排球和篮球共40个,总费用不超过550元,那么该中学至少可以购买多少个排球?

【答案】1)购买一个篮球16元,购买一个排球10元;(215

【解析】

1)设每个排球x元,每个篮球y元,根据购买4个篮球和3个排球需用94元;购买16个篮球和5个排球需用306,即可得出关于xy的二元一次方程组,解之即可得出结论;

2)设购买篮球a个,则购买排球(40-a)个,根据总价=单价×数量结合购买排球和篮球的总费用不超过550元,即可得出关于a的一元一次不等式,解之取其中的最小值整数值即可得出结论.

1)设购买一个排球元,购买一个篮球元:

解得

答:设购买一个篮球16元,购买一个排球10元;

2)设该中学可以购买个排球,则购买篮球个:

解得

答:该中学至少可以购买15个排球.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商店经销甲、乙两种商品现有如下信息:信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元.请根据以上信息,解答下列问题:

求甲、乙两种商品的零售单价;

该商店平均每天卖出甲商品500件和乙商品1200经调查发现,甲种商品零售单价每降元,甲种商品每天可多销售100商店决定把甲种商品的零售单价下降在不考虑其他因素的条件下,当m为多少时,商店每天销售甲、乙两种商品获取的总利润为1700元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形ABCD的顶点ABC的坐标分别为(05)(02)(42),直线l的解析式为y = kx+54kk > 0).

1)当直线l经过点B时,求一次函数的解析式;

2)通过计算说明:不论k为何值,直线l总经过点D

3)直线ly轴交于点M,点N是线段DM上的一点, △NBD为等腰三角形,试探究:

当函数y = kx+54k为正比例函数时,点N的个数有 个;

M在不同位置时,k的取值会相应变化,点N的个数情况可能会改变,请直接写出点N所有不同的个数情况以及相应的k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数,其中a0

1)若方程有两个实根,且方程有两个相等的实根,求二次函数的解析式;

2)若二次函数的图象与x轴交于两点,且当时,恒成立,求实数m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°DAB的中点,以CD为直径的⊙O分别交ACBC于点EF两点,过点FFGAB于点G

1)试判断FG与⊙O的位置关系,并说明理由.

2)若AC3CD2.5,求FG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平行四边形中,,则平行四边形的周长为____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1和图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.

(1)在图1中画出以AB为斜边的直角三角形ABC,点C在小正方形的顶点上,且

(2)在图2中画出以AB为一边的等腰三角形ABD,点D在小正方形的顶点上,且的面积为16.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙二人均从A地出发,甲以60/分的速度向东匀速行进,10分钟后,乙以(60m)/分的速度按同样的路线去追赶甲,乙出发5.5分钟后,甲以原速原路返回,在途中与乙相遇,相遇后两人均停止行进.设乙所用时间为t分钟.

1)当m=6时,解答:

设甲与A地的距离为,分别求甲向东行进及返回过程中,t的函数关系式(不写t的取值范围)

当甲、乙二人在途中相遇时,求甲行进的总时间.

2)若乙在出发9分钟内与甲相遇,求m的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践

操作发现:

如图1和图2,已知点为正方形的边上的一个动点(点除外),作射线,作于点于点于点

1)如图1,当点上(点除外)运动时,求证:

        

2)如图2,当点上(点除外)运动时,请直接写出线段之间的数量关系;

拓广探索:

3)在(1)的条件下,找出与相等的线段,并说明理由;

4)如图3,若点为矩形的边上一点,作射线,作于点于点于点.若,则_______

查看答案和解析>>

同步练习册答案