分析 (1)先根据直角三角形的性质得出∠1=∠2,再由AAS定理得出△CFA≌△CHD,进而可得出结论;
(2)根据∠BCE=45°得出∠1=∠2=45°.根据∠E=∠B=45°得出∠1=∠E,∠2=∠B,故可得出四边形ACDM是平行四边形,再由AC=CD即可得出结论.
解答 (1)证明:在△ACB和△ECD中,
∵∠ACB=∠ECD=90°,
∴∠1+∠ECB=∠2+∠ECB,
∴∠1=∠2;
又∵AC=CE=CB=CD,
∴∠A=∠D=45°;
在△CFA和△CHD中,
∵$\left\{\begin{array}{l}{∠1=∠2}\\{∠A=∠D}\\{CA=CD}\end{array}\right.$,
∴△CFA≌△CHD(AAS),
∴CF=CH.
(2)证明:∵∠ACB=∠ECD=90°,∠BCE=45°,
∴∠1=45°,∠2=45°.
又∵∠E=∠B=45°,
∴∠1=∠E,∠2=∠B,
∴AC∥MD,CD∥AM,
∴四边形ACDM是平行四边形,
又∵AC=CD,
∴平行四边形ACDM是菱形.
点评 本题考查的是旋转的性质,熟知图形旋转不变性的性质是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
a | … | 0.000001 | 0.0001 | 0.01 | 1 | 100 | 10000 | 100000 | … |
$\sqrt{a}$ | … | … |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com