精英家教网 > 初中数学 > 题目详情
已知:如图,E在AC上,∠1=∠2,∠3=∠4.求证:BE=DE.
只需先证明△ABC≌△ADC,再证明△BCE≌△DCE即可,过程“略”
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

此题有A、B、C三类题目,其中A类题4分,B类题6分,C类题8分,请你任选一类证明,多证明的题目不记分.
(A类)已知:如图1,AB=AC,AD=AE,求证:∠B=∠C;
(B类)已知:如图2,CE⊥AB于点E,BD⊥AC于点D,BD、CE交于点O,且AO平分∠BAC,求证:OB=OC;
(C类)如图3,△BDA、△HDC都是等腰直角三角形,且D在BC上,BH的延长线与AC交于点E,请你在图中找出一对全等三角形,并写出证明过程.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

26、在括号内填写理由.(1)如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.
证明:∵∠B+∠BCD=180°(已知),
∴AB∥CD (
同旁内角互补,两直线平行

∴∠B=∠DCE(
两直线平行,同位角相等

又∵∠B=∠D(已知 ),
∴∠DCE=∠D (
等量代换

∴AD∥BE(
内错角相等,两直线平行

∴∠E=∠DFE(
两直线平行,内错角相等


(2)已知:如图,DG⊥BC AC⊥BC,EF⊥AB,∠1=∠2.求证:CD⊥AB
证明:∵DG⊥BC,AC⊥BC(
已知

∴∠DGB=∠ACB=90°(
垂直的定义

∴DG∥AC(
同位角相等,两直线平行

∴∠2=
∠DCA
两直线平行,同位角相等

∵∠1=∠2(
已知
)∴∠1=∠DCA(
等量代换

∴EF∥CD(
同位角相等,两直线平行

∴∠AEF=∠ADC(
两直线平行,同位角相等

∵EF⊥AB∴∠AEF=90°  (
垂直的定义

∴∠ADC=90° (
等量代换

即CD⊥AB(
垂直的定义

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•长清区一模)(1)已知:如图1,在△ABC中,∠C=90°,点D、E分别在边 AB、AC上,DE∥BC,DE=3,BC=9,BD=10.求sinA的值.
(2)如图2,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

请在(1)和(2)两道题中自选一道题解答.

(1)如图1,在△ABC中,点D是BC边上的中点,DE⊥AB于E,DF⊥AC于F,且BE=CF.求证:△ABC为等腰三角形.
(2)已知:如图2,在△ABC中,∠B=∠ACB=
14
∠BAC,CD是AB边上的高,CD=5.求BC边上的长.

查看答案和解析>>

同步练习册答案