精英家教网 > 初中数学 > 题目详情

问题:在平面直角坐标系中,直线y=数学公式x+5交x轴于点A,交y轴于点B,交直线y=x-1于点C.过点A作y轴的平行线交直线y=x-1于点D.点E为线段AD上一点,且tan∠DCE=数学公式.点P从原点O出发沿OA边向点A匀速移动,同时,点Q从B点出发沿BO边向原点O匀速移动,点P与点Q同时到达A点和O点,设BQ=m.
(1)求点E的坐标;
(2)在整个移动过程中,是否存在这样的实数m,使得△PQD为直角三角形?若存在这样的实数m,求m的值;若不存在,请说明理由;
(3)函数y=数学公式经过点C,R为y=数学公式上一点,在整个移动过程中,若以P、Q、E、R为顶点的四边形是平行四边形,求R点的坐标.
要求:①解答上面问题;
②根据你对上面问题的解答,任意选择其中一问,说出你的主要解题思路.

解:(1)作CF⊥OA于F
∵y=x+5交x轴于点A,交y轴于点B
∴当x=0时,y=5,即OB=5
当y=0时,x=10,即OA=10
∴tan∠OAB=
∵tan∠DCE=
∴∠OAB=∠DCE
设直线OD交坐标轴分别于点G、H,当x=0时,y=-1,即OH=1
当y=0时,x=1,即OG=1
∴OG=OH,
∴∠OGH=45°
∴∠GDA=∠GAD=45°,在y=x-1中,当x=10时,y=9
∴AD=9
∴GD=9
∵y=x+5与y=x-1相交于点C,求得C点坐标为:C(4,3)
∴CF=3,∴GC=3
∴CD=6
∵△GCA∽△DEC


∴DE=4,∴AE=5
∵AD⊥x轴
∴E(10,5);

(2)∵点P与点Q同时分别从B点和O点运动,同时到达A点和O点,且OA是OB的2倍
∴P点运动的速度是Q点的2倍
∵QB=m,
∴OP=2m
∴QO=5-m,PA=10-2m
∵△PQD为直角三角形
∴△QOP∽△PAD


解得:m1=5,m2=

(3)过点R作HR∥OA交OB于点H,连接PR
∴∠DRP=∠OAR,∠3=∠4
∵四边形RQPE是平行四边形,
∴∠3=∠4,∠QRE=∠QPE,QR=AE
∴∠2=∠1
∴∠5=∠EPA
∴△RHQ≌△PAE
∴RH=PA,QH=AE
∴RH=10-2m,HQ=5
∵函数y=经过点C
∴k=12
y=,设R坐标为(a,b)
∴HO=5+5-m=10-m,HR=10-2M
∴a=10-2m,b=10-m
∴(10-2m)(10-m)=12
∴m1=11(不符合题意),m2=4
∴a=2,b=6
∴R(2,6).
分析:(1)设CE交AD于点E,作EF⊥OA于F.直线y=x+5中我们可以求出与x轴和y轴的交点坐标,从而求出OA、OB的长度,可以得到tan∠OAB=可以求出直线y=x-1与坐标轴的交点,得到△ADG是个等腰直角三角形,利用三角形相似,求出DE的长,从而求出E点的坐标.
(2)当△PQD是直角三角形时,就有△OQP∽△APD,利用对应边成比例可以求出m的值.
(3)因为PERQ是平行四边形,∴就有对边QR=PE,连接对角线就可以证明∠1=∠2,从而证明∠5=∠EPA,利用三角形全等求出线段的长度求出R的坐标.
点评:本题是一道一次函数的综合试题,考查了相似三角形的性质和判定,点的坐标的求法,平行四边形的性质,全等三角形的性质的运用,直角三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

请你利用直角坐标平面上任意两点(x1,y1)、(x2,y2)间的距离公式d=
(x1-x2)2+(y1-y2)2
解答下列问题:
已知:反比例函数y=
2
x
与正比例函数y=x的图象交于A、B两点(A在第一象限),点F1(-2,-2)、F2(2,2)在直线y=x上.设点P(x0,y0)是反比例函数y=
2
x
图象上的任意一点,记点P与F1、F2两点的距离之差d=|PF1-PF2|.试比较线段AB的长度与d的大小,并由此归纳出双曲线的一个重要定义(用简练的语言表述).

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列一段文字,然后回答下列问题.
已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离P1P2=
(x1-x2)2+(y1-y2
)2

同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2-x1|或|y2-y1|.
(1)已知A(2,4)、B(-3,-8),试求A、B两点间的距离;
(2)已知A、B在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为-1,试求A、B两点间的距离;
(3)已知一个三角形各顶点坐标为D(1,6)、E(-2,2)、F(4,2),你能判定此三角形的形状吗?说明理由;
(4)平面直角坐标中,在x轴上找一点P,使PD+PF的长度最短,求出点P的坐标以及PD+PF的最短长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

请你利用直角坐标平面上任意两点(x1,y1)、(x2,y2)间的距离公式数学公式解答下列问题:
已知:反比例函数数学公式与正比例函数y=x的图象交于A、B两点(A在第一象限),点F1(-2,-2)、F2(2,2)在直线y=x上.设点P(x0,y0)是反比例函数数学公式图象上的任意一点,记点P与F1、F2两点的距离之差d=|PF1-PF2|.试比较线段AB的长度与d的大小,并由此归纳出双曲线的一个重要定义(用简练的语言表述).

查看答案和解析>>

科目:初中数学 来源:竞赛题 题型:解答题

请你利用直角坐标平面上任意两点(x1 ,y1)、(x2,y2)间的距离公式解答下列问题:
已知:反比例函数与正比例函数的图象交于A、B两点(A在第一象限), 点F1(-2,-2)、F2(2,2)在直线上y=x。设点P(x0,y0)是反比例函数图象上的任意一点,记点P与F1、F2两点的距离之差
d=︱P F1 - P F2︱,试比较线段AB的长度与d的大小,并由此归纳出双曲线的一个重要定义(用简练的语言表述)。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

请你利用直角坐标平面上任意两点(x1,y1)、(x2,y2)间的距离公式d=
(x1-x2)2+(y1-y2)2
解答下列问题:
已知:反比例函数y=
2
x
与正比例函数y=x的图象交于A、B两点(A在第一象限),点F1(-2,-2)、F2(2,2)在直线y=x上.设点P(x0,y0)是反比例函数y=
2
x
图象上的任意一点,记点P与F1、F2两点的距离之差d=|PF1-PF2|.试比较线段AB的长度与d的大小,并由此归纳出双曲线的一个重要定义(用简练的语言表述).

查看答案和解析>>

同步练习册答案