精英家教网 > 初中数学 > 题目详情

【题目】如图, 已知ABC中, BAC=90°, AB=AC, AE是过A的一条直线, 且B、C在AE的异侧, BDAE于D, CEAE于E.

(1)求证: BD=DE+CE.

(2)若直线AE绕A点旋转到图位置时(BD<CE), 其余条件不变, 问BD与DE、CE的数量关系如何? 请给予证明;

(3)若直线AE绕A点旋转到图位置时(BD>CE), 其余条件不变, 问BD与DE、CE的数量关系如何? 请直接写出结果, 不需证明.

(4)根据以上的讨论,请用简洁的语言表达BD与DE,CE的数量关系。

【答案】(1)、证明过程见解析;(2)、BD=DECE;证明过程见解析;(3)、BD=DECE;(4)、B,CAE的同侧时BD=DECE;B,CAE的异侧时BD=DE+CE.

【解析】

试题分析:(1)、根据垂直得出ADB=CEA=90°,结合BAC=90°得出ABD=CAE,从而证明出ABD和ACE全等,根据全等得出BD=AE,AD=EC,然后得出答案;(2)、根据第一题同样的方法得出ABD和ACE全等,根据全等得出BD=AE,AD=EC,然后得出结论;(3)、根据同样的方法得出结论;(4)、根据前面的结论得出答案.

试题解析:(1)BDAE,CEAE ADB=CEA=90° ∴∠ABD+BAD=90° ∵∠BAC=90°

∴∠EAC+BAD=90° ∴∠ABD=CAE

ABD与ACE ∴△ABD≌△ACE BD=AE,AD=EC BD=DE+CE

(2)、BDAE,CEAE ADB=CEA=90° ∴∠ABD+BAD=90°

∵∠BAC=90°∴∠EAC+BAD=90° ∴∠ABD=CAE

ABDACE ∴△ABD≌△ACE BD=AE,AD=EC BD=DECE

(3)BD=DECE

(4)、归纳(1)(2)(3)可知B,CAE的同侧时BD = DE CE;B,CAE的异侧时BD=DE+CE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图ADB、BCD都是等边三角形点EF分别是ABAD上两个动点满足AE=DF连接BF与DE相交于点GCHBF垂足为H连接CG若DG=BG=满足下列关系:则GH=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.

(1)求证:四边形ABEF为菱形;

(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,,连结AC,过点C作直线lAB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.

(1)求∠BAC的度数;

(2)当点DAB上方,且CDBP时,求证:PC=AC;

(3)在点P的运动过程中

①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;

②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出BDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C90BDABC的一条角一平分线,点OEF分别在BDBCAC上,且四边形OECF是正方形,

1)求证:点O∠BAC的平分线上;

2)若AC5BC12,求OE的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足 = ,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.

(1)求证:△ADF∽△AED;

(2)求FG的长;

(3)求证:tan∠E=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠ACB90°ACBC,将ABC沿EF折叠,使点A落在直角边BC上的D点处,设EFABAC边分别交于点EF,如果折叠后CDFBDE均为等腰三角形,那么∠B_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以矩形ABCD的边CD为直径作⊙O,交矩形的对角线BD于点E,点F是BC的中点,连接EF.

(1)试判断EF与⊙O的位置关系,并说明理由.

(2)若DC=2,EF=,点P是⊙O上不与E、C重合的任意一点,则∠EPC的度数为 (直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校对学生就“食品安全知识”进行了抽样调查(每人选填一类),绘制了如图所示的两幅统计图(不完整)。请根据图中信息,解答下列问题:

(1)根据图中数据,求出扇形统计图中的值,并补全条形统计图。

(2)该校共有学生900人,估计该校学生对“食品安全知识”非常了解的人数.

查看答案和解析>>

同步练习册答案