精英家教网 > 初中数学 > 题目详情

【题目】如图,在CBD中,CD=BD,CDBD,BE平分CBA交CD于点F,CEBE垂足是E,CE与BD交于点A.求证:

(1)BF=AC;

(2)BE是AC的中垂线;

(3)若AD=2,求AB的长.

【答案】(1)见解析;(2)见解析;(3)4+2

【解析】

(1) CDABBEAC,可得BDF=ADC=AEB=90°,DBF=DCA,继而证明出△BDF≌△CDA可得结论;

(2) BE平分∠ABC,可证∠A=BCA,BC=BA ,CE=EA可得结论;

(3) 由(1)BDF≌△CDA,可得各边的长,可求出AB的长.

(1)证明:∵CD⊥AB,BE⊥AC,

∴∠BDF=∠ADC=∠AEB=90°,

∵∠DBF+∠A=90°,∠DCA+∠A=90°,

∴∠DBF=∠DCA,

∵BD=CD,

∴△BDF≌△CDA(SAS),

∴BF=AC.

(2)证明:BE平分∠ABC,

∴∠ABE=∠CBE,

∵∠BEA=∠BEC=90°,

∴∠A+∠ABE=90°,∠BCA+∠CBE=90°,

∴∠A=∠BCA,

∴BC=BA,

∵BE⊥AC,

∴CE=EA,

BE是AC的中垂线.

(3)解:连接AF.

∵△BDF≌△CDA,

∴AD=DF=2,AF=2

BE垂直平分AC,

∴CF=AF=2

∴BD=CD=2+2

∴AB=BD+AD=4+2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是(  )

A. 504m2 B. m2 C. m2 D. 1009m2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学组织学生去福利院献爱心在准备礼品时发现购买1个甲礼品比购买1个乙礼品多花40元,并且花费600元购买甲礼品和花费360元购买乙礼品的数量相等.

(1)向甲、乙两种礼品的单价各为多少元?

(2)学校准备购买甲、乙两种礼品共30个送给福利院的老人,要求购买礼品的总费用不超过2400那么最多可购买多少个甲礼品?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=30°,AOB内有一定点P,且OP=12,在OA上有一点Q,OB上有一点R,若PQR周长最小,则最小周长是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题,进行了认真的探索.
【思考题】如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?
(1)请你将小明对“思考题”的解答补充完整: 解:设点B将向外移动x米,即BB1=x,
则B1C=x+0.7,A1C=AC﹣AA1= ﹣0.4=2
而A1B1=2.5,在Rt△A1B1C中,由 得方程
解方程得x1= , x2=
∴点B将向外移动米.
(2)解完“思考题”后,小聪提出了如下两个问题: 【问题一】在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?
【问题二】在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?
请你解答小聪提出的这两个问题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E在线段CD上,AE,BE分别平分∠DAB和∠CBA,∠AEB=90°,设AD=x,BC=y,且(x-3)2+|y-4|=0.

(1)求AD和BC的长;

(2)你认为AD和BC有怎样的位置关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系 xOy 中,已知点 A(03),点 B(0),连接 AB.若对于平 面内一点 C,当△ABC 是以 AB 为腰的等腰三角形时,称点 C 是线段 AB 的“等长点”

(1)在点 C1 (2 ),点 C2 (0,-2),点 C3 ( )中,线段 AB 的“等长点”是点______________

(2)若点 D( m n )是线段 AB 的“等长点”,且∠DAB60,求 m n 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为( )

A.90
B.100
C.110
D.121

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明购买了一套安居型商品房,他准备将地面铺上地砖,地面结构如图所示.请根据图中的数据(单位:m),解答下列问题:

(1)用含x、y的代数式表示地面总面积;

(2)x=5,y=,铺1m2地砖的平均费用为80元,那么铺地砖的总费用为多少元?

查看答案和解析>>

同步练习册答案