分析 (1)由△ABC是等边三角形,得到∠ABC=∠ACB=60°,推出△CDE是等边三角形,得到∠EDC=60°,推出四边形ABDF是平行四边形,根据平行四边形的性质即可得到AF∥BC;
(2)由△ABC是等边三角形,得到AB=AC=BC,∠BAC=∠ACB=60°,根据等边三角形的性质得到ED=EC=DC,∠DEC=∠AEF=60°,推出△AEF是等边三角形,得到AF=AE,∠EAF=60°,于是得到结论.
解答 解:(1)∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°,
∵CD=CE,
∴△CDE是等边三角形,
∴∠EDC=60°,
∴∠ABC=∠FDC,
∴AB∥DF,
∵∠EAF=∠ACB=60°,
∴AB∥AF,
∴四边形ABDF是平行四边形,
∴AF∥BC;
(2)△ACF与△ABE全等,
理由:∵△ABC是等边三角形,
∴AB=AC=BC,∠BAC=∠ACB=60°,
∵DE=DC,
∴△DEC是等边三角形,
∴ED=EC=DC,∠DEC=∠AEF=60°,
∵EF=AE,
∴△AEF是等边三角形,
∴AF=AE,∠EAF=60°,
在△ABE和△ACF中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAE=∠CAF}\\{AE=AF}\end{array}\right.$,
∴△ABE≌△ACF.
点评 本题考查全等三角形的判定和性质、等边三角形的性质、平行四边形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,需要正确寻找全等三角形,属于中考常考题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 6 | B. | 4$\sqrt{2}$ | C. | 4 | D. | -4$\sqrt{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | x+2 | B. | x2+2 | C. | $\sqrt{{x}^{2}+2}$ | D. | $\sqrt{x}$+2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com