如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于点E.
(1)若∠ADC+∠ABC=180°,求证:AD+AB =2AE;
(2)若AD+AB =2AE,求证:CD=CB.
(1)可求证∠ADC=∠CBM.因此,△ADC≌△MBC,AD=BM.故AM=2AE=AB+ BM=AB+AD.
(2)可求证△ADC≌△MBC.所以,CD=CB
【解析】
试题分析:(1)如图.延长AB到点M,使AE=ME.又CE⊥AB,
故△ACM为等腰三角形.因此,AC=CM,∠l=∠3.
已知∠1 =∠2,所以,∠3=∠L2.又∠ADC+∠ABC=180°,
于是,∠ADC=∠CBM.因此,△ADC≌△MBC,AD=BM.
故AM=2AE=AB+ BM=AB+AD.
(2)如图,延长AB到点M,使BM=AD.由2AE=AB+AD=AB+BM=AM,故AE=ME.
∵CE⊥AM,同(1)得AC=MC,∠2=∠3. ∵BM=AD,∴△ADC≌△MBC.从而,CD=CB.
考点:等腰三角形及全等三角形
点评:本题难度中等,主要考查学生对等腰梯形及全等三角形性质知识点的掌握与综合运用能力,为中考常考题型,要求学生牢固掌握解题技巧。
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com