精英家教网 > 初中数学 > 题目详情

如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于点E.

(1)若∠ADC+∠ABC=180°,求证:AD+AB =2AE;

(2)若AD+AB =2AE,求证:CD=CB.

 

【答案】

(1)可求证∠ADC=∠CBM.因此,△ADC≌△MBC,AD=BM.故AM=2AE=AB+ BM=AB+AD.

(2)可求证△ADC≌△MBC.所以,CD=CB

【解析】

试题分析:(1)如图.延长AB到点M,使AE=ME.又CE⊥AB,

故△ACM为等腰三角形.因此,AC=CM,∠l=∠3.

已知∠1 =∠2,所以,∠3=∠L2.又∠ADC+∠ABC=180°,

于是,∠ADC=∠CBM.因此,△ADC≌△MBC,AD=BM.

故AM=2AE=AB+ BM=AB+AD.

(2)如图,延长AB到点M,使BM=AD.由2AE=AB+AD=AB+BM=AM,故AE=ME.

∵CE⊥AM,同(1)得AC=MC,∠2=∠3. ∵BM=AD,∴△ADC≌△MBC.从而,CD=CB.

考点:等腰三角形及全等三角形

点评:本题难度中等,主要考查学生对等腰梯形及全等三角形性质知识点的掌握与综合运用能力,为中考常考题型,要求学生牢固掌握解题技巧。

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠BAC=90°,将△ABC沿线段BC向右平移得到△DEF,使CE=AE,连结AD、AE、CD,则下列结论:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四边形AECD为菱形,其中正确的共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源:浙江省同步题 题型:证明题

已知:如图,在四边形ABC中,AD=BC,AB=CD.求证:AB∥CD,AD∥BC.

查看答案和解析>>

同步练习册答案