精英家教网 > 初中数学 > 题目详情

如图,直线y=-x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B'处.

求(1)点B'的坐标.(2)直线AM所对应的函数关系式

(1)(-4,0);(2).

解析试题分析:(1)分别令y=0,x=0求出直线y=-x+8与x轴、y轴交点A、B的坐标.根据折叠性质可得进而求得点B'的坐标(2)设OM=m则B'M=BM=8-m
根据勾股定理得;m2+42=(8-m)2,求出m=3,所以,M(0,3)设直线AM的解析式为y=kx+b,图象过(6,0)(0,3)代入可求得所以求出直线AM所对应的函数关系式.
试题解析:(1)A(6,0),B(0,8)
OA=6,OB="8" 根据勾股定理得:AB=10
根据折叠性质可得
A B'=AB=10,
O B'=10-6=4
B'(-4,0)
(2)设OM=m则B'M=BM=8-m
根据勾股定理得;
m2+42=(8-m)2
m=3
M(0,3)
设直线AM的解析式为y=kx+b

解得:
直线AM所对应的函数关系式
考点:1.折叠问题;2.一次函数的解析式;3.一次函数图象与坐标轴交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

在平面直角坐标系中,O为坐标原点,点A坐标为(1,0),以OA为边在第一象限内作等边△OAB,C为x轴正半轴上的一个动点(OC>1),连接BC,以BC为边在第一象限内作等边△BCD,直线DA交y轴于E点.
(1)如图,当C点在x轴上运动时,设AC=x,请用x表示线段AD的长;

(2)随着C点的变化,直线AE的位置变化吗?若变化,请说明理由;若不变,请求出直线AE的解析式.
(3)以线段BC为直径作圆,圆心为点F,
①当C点运动到何处时直线EF∥直线BO?此时⊙F和直线BO的位置关系如何?请说明理由.
②G为CD与⊙F的交点,H为直线DF上的一个动点,连结HG、HC,求HG+HC的最小值,并将此最小值用x表示.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知一次函数y=(12m)x+m+1,求当m为何值时.
(1)y随x的增大而增大?
(2)图象经过第一、二、四象限?
(3)图象经过第二、四象限?
(4)图象与y轴的交点在x轴的下方?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

“十一黄金周”的某一天,小刚全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩,该小汽车离家的路程S(千米)与时间t (时)的关系可以用右图的折线表示。根据图象提供的有关信息,解答下列问题:

(1)小刚全家在旅游景点游玩了多少小时?
(2)求出整个旅程中S(千米)与时间t (时)的函数关系式,并求出相应自变量t的取值范围。
(3)小刚全家在什么时候离家120㎞?什么时候到家?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知y1与x成正比例,y2与x+2成正比例,且y=y1+y2,当x=2时,y=4;当x=-1时,y=7,求y与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系xOy中,点分别在轴、轴的正半轴上,且,点为线段的中点.
(1)如图1,线段的长度为________________;

(2)如图2,以为斜边作等腰直角三角形,当点在第一象限时,求直线所对应的函数的解析式;

(3)如图3,设点分别在轴、轴的负半轴上,且,以为边在第三象限内作正方形,请求出线段长度的最大值,并直接写出此时直线所对应的函数的解析式.

图2

 

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路ι步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为y1米,小亮与甲地的距离为y2米,小明与小亮之间的距离为s米,小明行走的时间为x分钟.y1、y2与x之间的函数图象如图1,s与x之间的函数图象(部分)如图2.

(1)求小亮从乙地到甲地过程中y1(米)与x(分钟)之间的函数关系式;
(2)求小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式;
(3)在图2中,补全整个过程中s(米)与x(分钟)之间的函数图象,并确定a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:

x(单位:台)
10
20
30
y(单位:万元∕台)
60
55
50
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求该机器的生产数量;
(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价﹣成本)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2012年秋季,某省部分地区遭受严重的雨雪自然灾害,兴化农场34800亩的农作物面临着收割困难的局面.兴华农场积极想办法,决定采取机械收割和人工收割两种方式同时进行抢收,工作了4天,由于雨雪过大,机械收割被迫停止,此时,人工收割的工作效率也减少到原来的,第8天时,雨雪停止附近的胜利农场前来支援,合作6天,完成了兴化农场所有的收割任务.图1是机械收割的亩数y1(亩)和人工收割的亩数y2(亩)与时间x(天)之间的函数图象.图2是剩余的农作物的亩数w(亩)与时间x天之间的函数图象,请结合图象回答下列问题.

(1)请直接写出:A点的纵坐标   
(2)求直线BC的解析式.
(3)第几天时,机械收割的总量是人工收割总量的10倍?

查看答案和解析>>

同步练习册答案