精英家教网 > 初中数学 > 题目详情
3.一个不透明的矩形容器里装有10个小球(除颜色外完全相同),其中4个白球,6个红球,现从容器中摸出两个球,则摸到相同颜色的球的概率是$\frac{7}{15}$.

分析 先画树状图展示所有90种等可能的结果数,再找出相同颜色的球的结果数,然后根据概率公式求解.

解答 解:画树状图为:



共有90种等可能的结果数,其中摸到相同颜色的球的结果数为42,
所以摸到相同颜色的球的概率=$\frac{42}{90}$=$\frac{7}{15}$.
故答案为$\frac{7}{15}$.

点评 本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.计算:2-2$-\sqrt{(-2)^{2}}$+6sin45°-$\sqrt{18}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,AB是半圆O的直径,D是$\widehat{AB}$上一点,C是$\widehat{AD}$的中点,过点C作AB的垂线,交AB于E,与过点D的切线交于点G,连接AD,分别交CE、CB于点P、Q,连接AC,关于下列结论:
①∠BAD=∠ABC;
②GP=GD;
③点P是△ACQ的外心.
其中正确结论是②③(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,一次函数y=kx+b与反比例函数y=$\frac{m}{x}$(m≠0)的图象交于A(6,1),B(a,6)两点.
(1)求两个函数的解析式;
(2)根据图象直接回答:在第一象限内,当x取何值时,一次函数的值大于反比例函数的值?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.菱形ABCD中,E、F是AB和AC的中点,EF=1,则菱形ABCD的周长为8.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,将一个菱形的纸片剪成4个完全相同的小菱形,共得到4个菱形,再将其中1个小菱形剪成4个完全相同的更小的菱形,共得到7个菱形,…,按照此规律,依次操作减剪下去,则第n次剪,会得到菱形的个数为(  )
A.2n个B.(2n+1)个C.3n个D.(3n+1)个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在矩形OABC中,A(6,0)、C(0,2$\sqrt{3}$)、D(0,3$\sqrt{3}$),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上的动点,满足∠PQO=60°.
(1)①点B的坐标是(6,2$\sqrt{3}$);
②∠CAO=30度;
③当点Q与点A重合时,点P的坐标为(3,3$\sqrt{3}$)(直接写出答案)
(2)设OA的中心为N,PQ与线段AC相交于点M,是否存在点P,使△AMN为等腰三角形?若存在,请直接写出点P的横坐标m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.在一个角的内部(不包括顶点)且到角的两边距离相等的点的轨迹是这个角的平分线
(除顶点).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y=$\frac{3}{20}$x2-3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.
(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.
①点B的坐标为(10、0),BK的长是8,CK的长是10;
②求点F的坐标;
③请直接写出抛物线的函数表达式;
(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1•S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.
温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.

查看答案和解析>>

同步练习册答案