精英家教网 > 初中数学 > 题目详情
13.如图,A、D是⊙O上的两个点,BC是直径.若∠D=32°,则∠OAC=(  )
A.64°B.58°C.72°D.55°

分析 先根据圆周角定理求出∠B及∠BAC的度数,再由等腰三角形的性质求出∠OAB的度数,进而可得出结论.

解答 解:∵BC是直径,∠D=32°,
∴∠B=∠D=32°,∠BAC=90°.
∵OA=OB,
∴∠BAO=∠B=32°,
∴∠OAC=∠BAC-∠BAO=90°-32°=58°.
故选B.

点评 本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.方程35%x+1.3=x的解是x=2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.方程$\sqrt{x-3}$•$\sqrt{x}$=0的解是x=3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.120°的圆心角对的弧长是6π,则此弧所在圆的半径是(  )
A.3B.4C.9D.18

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上点,连接EF.
(1)图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=3S△EDF,求AE的长;
(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.
①试判断四边形AEMF的形状,并证明你的结论;
②求EF的长;
(3)如图③,若FE的延长线与BC的延长线交于点N,CN=1,CE=$\frac{4}{7}$,求$\frac{AF}{BF}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.计算:${(\sqrt{2}+1)^0}-3tan30°+{(-1)^{2016}}-{(\frac{1}{2})^{-1}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.据《云南省生物物种名录(2016版)的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为(  )
A.2.5434×103B.2.5434×104C.2.5434×10-3D.2.5434×10-4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.求不等式组$\left\{\begin{array}{l}5x-3<4x\\ 4(x+1)+2≥x\end{array}\right.$的解集,并把它们的解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.我市城市风貌提升工程正在火热进行中,检查中发现一些破旧的公交车候车亭有碍观瞻,现准备制作一批新的公交车候车亭,查看了网上的一些候车亭图片后,设计师画了两幅侧面示意图,AB,FG均为水平线段,CD⊥AB,PQ⊥FG,E,H为垂足,且AE=FH,AB=FG=2米,图1中tanA=$\frac{2}{5}$,tanB=$\frac{3}{5}$,图2点P在弧FG上.且弧FG所在圆的圆心O到FG,PQ的距离之比为5:2,
(1)求图1中的CE长;
(2)求图2中的PH长.

查看答案和解析>>

同步练习册答案