精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,以坐标原点O为圆心的⊙O的半径为
2
-1,直线L:y=-x-
2
与坐标轴分别交于A、C两点,点B的坐标为(4,1),⊙B与x轴相切于点M.
(1)求点A的坐标及∠CAO的度数;
(2)⊙B以每秒1个单位长度的速度沿x轴负方向平移,同时,直线l绕点A顺时针匀速旋转.当⊙B第一次与⊙O相切时,直线L也恰好与⊙B第一次相切.问:直线AC绕点A每秒旋转多少度?
精英家教网
分析:(1)根据直线的方程,可得A的坐标、点C的坐标,进而可得AO,CO的长;最后可得∠CAO=45°;
(2)根据题意,求得⊙B第一次与⊙O相切,即外切时,运动的长度与时间、直线l的位置;进而求出其旋转的角度,最后可求得直线AC绕点A每秒旋转的度数.
解答:解:(1)A(-
2
,0),
∵C(0,-
2
),
∴OA=OC.
∵OA⊥OC,
∴∠CAO=45°.

(2)如图,设⊙B平移t秒到⊙B1处与⊙O第一次相切,此时,直线α旋转到α1恰好与⊙B1第一次相切于点P,⊙B1与x轴相切于点N,连接B1O,B1N,则MN=t.
∵以坐标原点O为圆心的⊙O的半径为
2
-1,点B的坐标为(4,1),⊙B与x轴相切于点M.
∴B1O=
2
-1+1=
2

∵B1N⊥AN,精英家教网
∴MN=3,即t=3.
连接B1A,B1P.则B1P⊥AP,B1P=B1N.
∴∠PAB1=∠NAB1
∵OA=OB1=
2

∴∠AB1O=∠NAB1
∴∠PAB1=∠AB1O.
∴PA∥B1O.
在Rt△NOB1中,∠B1ON=45°,
∴∠PAN=45°,
∴∠PAC=90°,
360°-90°
3
=90°
∴直线AC绕点A顺时针旋转每秒转动90°.
点评:本题在平面直角坐标系中,求解圆的位置关系的问题,考查学生代数与几何知识的综合运用能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案