【题目】如图,在Rt△ABC中,∠ACB=90°.
(1)请用尺规作图法,作∠ACB的平分线CD,交AB于点D;(不要求写作法,保留作图痕迹)
(2)在(1)的条件下,过点D分别作 DE⊥AC于点E,DF⊥BC于点F.求证:四边形CEDF是正方形.
【答案】(1)见解析;(2)见解析
【解析】
(1)以C为圆心作圆弧,交AC,BC边于两点,在以这两点为圆心作弧相交于一点,然后连接C和这点,与AB交于点D,则AD为∠ACB的角平分线;
(2)先证四边形CEDF为矩形,再由角平分线得DE=DF,即可证明四边形CEDF为正方形.
(1)以C为圆心作圆弧,交AC,BC边于两点,在以这两点为圆心作弧相交于一点,然后连接C和这点,与AB交于点D,则AD为∠ACB的角平分线,如图所示:
(2)∵DE⊥AC,DF⊥BC,
∴∠DEC=∠DFC=90°,
∵∠ACB=90°,
∴四边形CEDF为矩形,
∵CD平分∠ACB,
∴DE=DF,
∴四边形CEDF为正方形.
科目:初中数学 来源: 题型:
【题目】将两个等腰Rt△ADE、Rt△ABC如图放置在一起,其中∠DAE=∠ABC=90°.点E在AB上,AC与DE交于点H,连接BH、CE,且∠BCE=15°,下列结论:①AC垂直平分DE;②△CDE为等边三角形;③tan∠BCD=;④;正确的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.
(1)求证:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形ABCD的顶点A、B在反比例函数y=(k>0,x>0)的图象上,点A、B横坐标分别为2和6,对角线BD∥x轴,若菱形ABCD的面积为40,则k的值为( )
A.15B.10C.D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为落实“绿水青山就是金山银山”的发展理念,某县政府部门决定,招标一工程队负责完成一座水库的土方施工任务.该工程队有A,B两种型号的挖掘机,已知1台A型和2台B型挖掘机同时施工1小时共挖土80立方米,2台A型和3台B型挖掘机同时施工1小时共挖土140立方米.每台A型挖掘机一个小时的施工费用是350元,每台B型挖掘机一个小时的施工费用是200元.
(1)分别求每台A型,B型挖掘机一小时各挖土多少立方米?
(2)若A型和B型挖掘机共10台同时施工4小时,至少完成1360立方米的挖土量,且总费用不超过14000元.问施工时有哪几种调配方案?且指出哪种调配方案的施工费用最低,最低费用多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,已知抛物线y=-x2+bx+c与x轴交于点A(-1,0)、B(3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)点D的坐标为(1,0),点P为第一象限内抛物线上的一点,求四边形BDCP面积的最大值;
(3)如图②,动点M从点O出发,以每秒2个单位长度的速度向点B运动,到达点B时停止运动,且不与点O、B重合.设运动时间为t秒,过点M作x轴的垂线交抛物线于点N,交线段BC于点Q,连接OQ,是否存在t值,使得△BOQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司购进一批新产品进行销售,已知该产品的进货单价为8元/件,该公司对这批新产品上市后的销售情况进行了跟踪调查.销售过程中发现,该产品每月的销售量(万件)与销售单价(元)之间的关系满足下表.
销售单价(元/件) | … | 10 | 12 | 14 | 15 | … |
每月销售量(万件) | … | 40 | 36 | 32 | 30 | … |
(1)请你从所学过的一次函数、二次函数和反比例函数三个模型中确定哪种函数能比较恰当地表示与的变化规律,并求出与之间的函数关系式;
(2)当销售单价为多少元时,该产品每月获得的利润为240万元?
(3)如果该产品每月的进货成本不超过160万元,那么当销售单价为多少元时,该产品每月获得的利润最大?最大利润为多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与x轴交于点A、B(点A位于点B的左侧),与y轴交于点C,CD∥x轴交抛物线于点D,M为抛物线的顶点.
(1)求点A、B、C的坐标;
(2)设动点N(-2,n),求使MN+BN的值最小时n的值;
(3)P是抛物线上一点,请你探究:是否存在点P,使以P、A、B为顶点的三角形与△ABD相似,(△PAB与△ABD不重合)?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了了解九年级学生“一分钟跳绳”体育测试项目情况,随机抽取了九年级部分学生组成测试小组进行调查测试,并对这部分学生“一分钟跳绳”测试的成绩按A,B,C,D四个等级进行了统计,并绘制了如下两幅不完整的统计图.
(1)本次随机调查抽样的样本容量为 ;
(2)D等级所对扇形的圆心角为 °,并将条形统计图补充完整;
(3)如果该学校九年级共有400名学生,那么根据以上样本统计全校九年级“一分钟跳绳”测试成绩为A等级的学生有 人;
(4)现有测试成绩为A等级,且表现比较突出的两男两女共4名学生,计划从这4名学生中随机抽取2名同学作平时训练经验交流,请用列表法或画树状图的方法,求所选两位同学恰好是1男1女的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com