精英家教网 > 初中数学 > 题目详情
13.解下列一元二次方程
(1)x2+3x-4=0       
(2)2x2-4x-1=0(配方法)
(3)5x+2=3x2
(4)4x(2x-1)=1-2x.

分析 (1)根据因式分解法,可得方程的解;
(2)根据配方法,可得方程的解;
(3)根据因式分解法,可得方程的解;
(4)根据因式分解法,可得方程的解.

解答 解:(1)因式分解,得
(x-1)(x+4)=0.
于是,得
x-1=0或x+4=0,
x1=1,x2=-4;
(2)移项,得
2x2-4x=1,
二次项系数化为1,得
x2-2x=$\frac{1}{2}$,
配方,得
(x-1)2=$\frac{3}{2}$,
开方,得
x-1=±$\frac{\sqrt{6}}{2}$,
x1=$\frac{2+\sqrt{6}}{2}$,x2=$\frac{2-\sqrt{6}}{2}$;
(3)移项,得
3x2-5x-2=0.
因式分解,得
(3x+1)(x-2)=0,
于是,得
3x+1=0,或x-2=0,
x1=-$\frac{1}{3}$,x2=2;
(4)移项,得
4x(2x-1)+(2x-1)=0.
因式分解,得
(2x-1)(4x+1)=0.
于是得
2x-1=0或4x+1=0.
x1=$\frac{1}{2}$,x2=-$\frac{1}{4}$.

点评 本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.如图,在?ABCD中,AC、BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,BG⊥AC于点G,DH⊥AC于点H,连接EH、HF、FG、GE,那么四边形EHFG是平行四边形吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列二次根式属于最简二次根式的是(  )
A.$\sqrt{12}$B.$\sqrt{{a}^{2}b}$C.$\sqrt{0.5}$D.$\sqrt{x{\;}^{2}+1}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知一元二次方程x2-2x+m=0.
(1)若方程有两个实数根,求m的范围;
(2)为m选取一个非负整数,使方程有两个不相等的实数根,并求这两个根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.学校课外生物小组的试验园地是长20米宽15米的长方形.为了便于管理,现要在中间开辟一横两纵等宽的小道(如图),要使种植面积为252平方米,求小道的宽.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.某工程,在工程招标时,接到甲、乙两个工程队的投标书.投标内容是:施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成,试问:
(1)规定日期是多少天?
(2)在不耽误工期的前提下,你觉得上述三种施工方案中哪一种最节省工程款?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为(  )
A.40°B.30°C.45°D.50°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,求该古城墙的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.下列计算正确的是(  )
A.2m+3n=5mnB.2a•3a=6aC.(a23=a5D.a6÷a2=a4

查看答案和解析>>

同步练习册答案