精英家教网 > 初中数学 > 题目详情
精英家教网反比例函数y=
mx
(m≠0)的图象如图所示,请写出一条正确的结论
 
分析:把点A的横纵坐标代入所给函数解析式即可求得m的值.
解答:解:m=1×2,
∴函数解析式为:y=
2
x
点评:点在函数解析式上,横纵坐标就适合这个函数解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=
m
x
(m≠0)的图象相交于第一、三象限内的A、B两点,与x轴相交于点C,连接AO,过点A作AD⊥x轴于点D,且OA=OC=5,cos∠AOD=
3
5

(1)求该反比例函数和一次函数的解析式;
(2)若点E在x轴上(异于点O),且S△BCO=S△BCE,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,反比例函数y1=
mx
与一次函数y2=kx+b的图象交于两点A(n,-1)、B(1,2).
(1)求反比例函数与一次函数的关系式;
(2)根据图象,直接回答:当x取何值时,y1≥y2
(3)连接OA、OB,求△AOB的面积;
(4)在反比例函数的图象上找点P,使△POB为等腰三角形,这样的P点有几个?并直接写出两个满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y=kx+b的图象与反比例函数y=
m
x
的图象交于点A(-2,-5)、C(5,n),交,轴于点B,交x轴于点D.
(1)求反比例函数y=
m
x
和一次函数y=kx+b的表达式;
(2)连接OA、OC,求△AOC的面积.
(3)求方程kx+b-
m
x
=0
的解(请直接写出答案);
-2或5
-2或5

(4)求不等式kx+b-
m
x
>0的解集(请直接写出答案).
-2<x<0或x>5
-2<x<0或x>5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y=kx+b的图象与反比例函数y=
mx
的图象相交于A、B两点.
(1)利用图中条件,求反比例函数与一次函数的关系式;
(2)根据图象写出使该一次函数的值小于该反比例函数的值的x的取值范围;
(3)过B点作BH垂直于x轴垂足为H,连接OB,在x轴是否存在一点P(不与点O重合),使得以P、B、H为顶点的三角形与△BHO相似?若存在,直接写出点P的坐标;不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,一次函数y=kx+b的图象与反比例函数y=
mx
的图象相交于A、B两点
(1)根据图象,求出两函数解析式;
(2)根据图象回答:当x为何值时,一次函数的函数值大于反比例函数的函数值;
(3)连结OA、OB,求△AOB的面积.

查看答案和解析>>

同步练习册答案