精英家教网 > 初中数学 > 题目详情

【题目】有这样一个问题:探究函数 的图象与性质.小怀根据学习函数的经验,对函数 的图象与性质进行了探究.下面是小怀的探究过程,请补充完成:
(1)函数 的自变量x的取值范围是
(2)列出y与x的几组对应值.请直接写出m的值,m=
(3)请在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;
(4)结合函数的图象,写出函数 的一条性质.

x

﹣5

﹣4

﹣3

﹣2

0

1

2

m

4

5

y

2

3

﹣1

0

【答案】
(1)x≠﹣1
(2)3
(3)解:描点、连线画出图象如图所示


(4)解:观察函数图象,发现:函数 在x<﹣1和x>﹣1上均单调递增.


【解析】解:(1.)∵x+1≠0, ∴x≠﹣1.
所以答案是:x≠﹣1.
(2.)当y= = 时,x=3.
所以答案是:3.
【考点精析】关于本题考查的反比例函数的性质,需要了解性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元.大樱桃售价为每千克40元,小樱桃售价为每千克16元.

(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?

(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠C=90°AB=5cmBC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.

1)出发2秒后,求ABP的周长.

2)问t为何值时,BCP为等腰三角形?(要有必要的过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2017湖北省鄂州市,第8题,3分)小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,图中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校,小东始终以100m/min的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:

①打电话时,小东和妈妈的距离为1400米;

②小东和妈妈相遇后,妈妈回家的速度为50m/min;

③小东打完电话后,经过27min到达学校;

④小东家离学校的距离为2900m

其中正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交⊙A于点F,连接AF、BF,DF.
(1)求证:BF⊥AF;
(2)当∠CAB等于多少度时,四边形ADEF为菱形?请给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图)

(1)请根据题中已有的信息补全频数分布表和频数分布直方图;

月均用水量/t

频数

百分比

2≤x3

2

4%

3≤x4

12

24%

4≤x5

5≤x6

10

20%

6≤x7

12%

7≤x8

3

6%

8≤x9

2

4%

 

(2)如果家庭月均用水量大于或等于4 t且小于7 t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD、CD于G、F两点.若M、N分别是DG、CE的中点,则MN的长为 ( )

A.3
B.
C.
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AD是ABC的边BC上的中线,AB=12,AC=8,则边BC的取值范围是_______________________;中线AD的取值范围是__________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1问题背景

如图1在四边形ABCDABADBAD120°BADC90°EF分别是BCCD上的点EAF60°探究图中线段BEEFFD之间的数量关系

小王同学探究此问题的方法是延长FD到点G使DGBE连结AG先证明ABE≌△ADG再证明AEF≌△AGF可得出结论他的结论应是

2探索延伸

如图2若在四边形ABCDABADBD180°EF分别是BCCD上的点EAFBAD上述结论是否仍然成立并说明理由

3结论应用

如图3在某次军事演习中舰艇甲在指挥中心(O处)北偏西30°A舰艇乙在指挥中心南偏东70°B并且两舰艇到指挥中心的距离相等.接到行动指令后舰艇甲向正东方向以60海里/小时的速度前进舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后指挥中心观测到甲、乙两舰艇分别到达EF且两舰艇与指挥中心O之间夹角EOF=70°试求此时两舰艇之间的距离

4能力提高

如图4等腰直角三角形ABCBAC90°ABACMN在边BCMAN45°.若BM1CN3试求出MN的长

查看答案和解析>>

同步练习册答案