精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD中,F为AB上一点,E是BC延长线上一点,且AF=EC,连接EF,DE,DF,M是FE中点,连接MC,设FE与DC相交于点N.
(1)在以下结论①∠FDB=∠FEB;②MC垂直平分BD;③△DFN∽△EBD中正确的有________,请选择一个你认为正确的结论进行证明.
(2)若MC=数学公式,求BF的长.

解:(1)①②③.
②MC垂直平分BD,
证明如下:连接BM、DM.
∵ABCD是正方形,
∴∠A=∠DCE=90°,AD=CD;
又∵AF=EC(已知),
∴△AFD≌△CED.(SAS)
∴∠FDA=∠EDC,DF=DE.
∴∠FDE=∠ADC=90°.
∵M是EF的中点,
∴MD=EF;
∵BM=EF,
∴MD=MB=PC.
又 DC=BC,MC是公共边,
∴△DCM≌△BCM,(SSS)
∴∠BCM=∠DCM,即DP平分∠ADC,
∴CM在正方形ABCD的角平分线AC上,
∴MC垂直平分BD;

(2)过点M作MQ⊥BC于点.
由(1)知,CM即BD的中垂线,
∴∠MCQ=45°;
又∵点M是EF的中点,
∴MQ是直角三角形EFB的中位线,
∴MQ=BF;
又∵MC=
∴MQ=1,
∴BF=2MQ=2.
分析:(1)①②③,选择②进行证明.连接BM、DM.根据直角三角形的性质可得BM=EF=MD.运用“SSS”证明△BCM≌△DCM,得∠BCM=∠DCM;最后由正方形的性质推知MC垂直平分BD;
(2)过点M作MQ⊥BC于点,构建直角三角形BEF的中位线MQ;根据正方形对角线的性质推知∠MCQ=45°;然后利用锐角三角函数求得MQ=1;最后根据三角形中位线定理求得BF的长.
点评:本题考查了正方形的相关性质,三角形的全等,线段中垂线的判定.特殊的四边形一直是中考的热点,所以想设计一题此类的综合压轴题,能适当结合证明与计算,并且能让学生有回旋余地,故设计了第(1)小题的开放题,当然这三个结论在证明的难易程度中我认为是不相上下的,任何一个结论的得到都需要一定的思维量,因为考查的知识点都很丰富.当然若是选择第二个结论的证明,将对第(2)小题有铺垫作用,难易程度--难.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案