精英家教网 > 初中数学 > 题目详情
14.平面直角坐标系中,已知A(8,0),△AOP为等腰三角形且面积为16,满足条件的P点有(  )
A.12个B.10个C.8个D.6个

分析 使△AOP为等腰三角形,只需分两种情况考虑:OA当底边或OA当腰.当OA是底边时,有2个点;当OA是腰时,有8个点,即可得出答案.

解答 解:∵A(8,0),
∴OA=8,
设△AOP的边OA上的高是h,
则$\frac{1}{2}$×8×h=16,
解得:h=4,
在x轴的两侧作直线a和直线b都和x轴平行,且到x轴的距离都等于4,如图:

①以A为圆心,以8为半径画弧,交直线a和直线b分别有两个点,即共4个点符合,
②以O为圆心,以8为半径画弧,交直线a和直线b分别有两个点,即共4个点符合,
③作AO的垂直平分线分别交直线a、b于一点,即共2个点符合,
4+4+1+1=10.
故选B

点评 此题主要考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4.直线l上有一点C在点P右侧,PC=4cm,过点C作射线CD⊥l,点F为射线CD上的一个动点,连结AF.当△AFC与△ABQ全等时,AQ=12cm.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.在Rt△ABC中,已知∠C=90°,AC=12,BC=5,则cosA等于(  )
A.$\frac{5}{12}$B.$\frac{5}{13}$C.$\frac{12}{13}$D.$\frac{12}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.解决下列问题:
已知二次根式$\sqrt{2{x}^{2}+2}$
(1)当x=3时,求$\sqrt{2{x}^{2}+2}$的值.
(2)若x是正数,$\sqrt{2{x}^{2}+2}$是整数,求x的最小值.
(3)若$\sqrt{2{x}^{2}+2}$和$\sqrt{2{x}^{2}+x+4}$是两个最简二次根式,且被开方数相同,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.计算:3x-4x=-x;$\frac{1}{2}$y-3y+2y=-$\frac{1}{2}$y;-8x2+8x2=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,点E、F位于正方形ABCD边BC、CD上.
(1)当BE:EC=2:1,∠EAF=30°时,求CF:FD的值;
(2)若tan∠BAE=$\frac{1}{2}$,tan∠DAF=$\frac{1}{3}$,求∠EAF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.某户人家3月份用水m吨,由于节约用水,4月份的用水量比3月份减少10%,则4月份用水(1-10%)m吨,若3月份用水5吨,则4月份用水4.5吨.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.通分:
(1)$\frac{x}{6a{b}^{2}}$,$\frac{y}{9{a}^{2}bc}$
(2)$\frac{a-1}{{a}^{2}+2a+1}$,$\frac{6}{{a}^{2}-1}$
(3)$\frac{1}{x}$,$\frac{x}{x+1}$,$\frac{2}{3x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如果多项式x2-5x+m分解因式的结果为(x-3)(x+n),那么m,n的值分别为(  )
A.m=-2,n=6B.m=2,n=-6C.m=6,n=-2D.m=-6,n=-2

查看答案和解析>>

同步练习册答案