精英家教网 > 初中数学 > 题目详情

已知抛物线C1:y=x2+mx+1的顶点在x轴负半轴上.
(1)求抛物线C1的顶点坐标;
(2)把抛物线C1向下平移若干个单位后,得到抛物线C2,已知C2与x轴的交点为A(1,0)、B,求抛物线C2的函数解析式和B点的坐标;
(3)若P(n,y1)、Q(2,y2)是抛物线C1上的两点,且y1>y2.直接写出实数n的取值范围.

解:(1)∵y=x2+mx+1的顶点在x轴负半轴上,
∴b2-4ac=m2-4=0,x=-<0,则m>0,
解得:m1=2,m2=-2(不合题意舍去),
∴y=x2+mx+1=x2+2x+1=(x+1)2
∴C1的顶点坐标为(-1,0);

(2)设C2的函数关系式为y=(x+1)2+k,
把A(1,0)代入上式得(1+1)2+k=0,得k=-4,
∴C2的函数关系式为y=(x+1)2-4.
∵抛物线的对称轴为直线x=-1,与x轴的一个交点为A(1,0),
由对称性可知,它与x轴的另一个交点B的坐标为(-3,0);

(3)当x≥-1时,y随x的增大而增大,
当n≥-1时,
∵y1>y2
∴n>2.
当n<-1时,P(n,y1)的对称点坐标为(-2-n,y1),且-2-n>-1,
∵y1>y2
∴-2-n>2,
∴n<-4.
综上所述:n>2或n<-4.
分析:(1)由于二次函数y=x2+mx+1的顶点在x轴负半轴上,那么顶点的纵坐标为0,由此可以确定m.
(2)首先设所求抛物线解析式为y=(x+1)2+k,然后把A(1,0)代入即可求出k,也就求出了抛物线的解析式;
(3)由于图象C1的对称轴为直线x=-1,所以知道当x≥-1时,y随x的增大而增大,然后讨论n≥-1和n≤-1两种情况,利用前面的结论即可得到实数n的取值范围.
点评:此题考查了抛物线与x轴交点个数与其判别式的关系以及抛物线平移的性质和抛物线的增减性,熟练掌握二次函数平移的性质是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线C1与坐标轴的交点依次是A(-4,0),B(-2,0),E(0,8).
(1)求抛物线C1关于原点对称的抛物线C2的解析式;
(2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于C,D两点(点C在点D的左侧),顶点为N,四边形MDNA的面积为S.若点A,点D同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止.求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围;
(3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值;
(4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线C1:y=-x2+2mx+1(m为常数,且m≠0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B.若点P是抛物线C1上的点,使得以A、B、C、P为顶点的四边形为菱形,则m为(  )
A、±
3
B、
3
C、±
2
D、
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线C1:y=a(x-2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点A的横坐标是-1.
(1)求P点坐标及a的值;
(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向左平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点A成中心对称时,求C3的解析式y=a(x-h)2+k;
(3)如图(2),点Q是x轴负半轴上一动点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、E为顶点的三角形是直角三角形时,求顶点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•房山区一模)已知抛物线C1:y=ax2+4ax+4a-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
(1)求抛物线的解析式和顶点P的坐标;
(2)将抛物线沿x轴翻折,再向右平移,平移后的抛物线C2的顶点为M,当点P、M关于点B成中心对称时,求平移后的抛物线C2的解析式;
(3)直线y=-
35
x+m
与抛物线C1、C2的对称轴分别交于点E、F,设由点E、P、F、M构成的四边形的面积为s,试用含m的代数式表示s.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线C1:y=-x2+2mx+1(m为常数,且m≠0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B.若点P是抛物线C1上的点,使得以A、B、C、P为顶点的四边形为菱形,则m的值为
±
3
±
3

查看答案和解析>>

同步练习册答案